Modeling the dynamics of complex multibody systems with kinematical transmission elements

[1]  Narsingh Deo Minimum-length fundamental cycle set , 1979 .

[2]  F. L. Litvin,et al.  Simplification of the Matrix method of linkage analysis by division of a mechanism into unclosed kinematic chains , 1975 .

[3]  Manfred Hiller,et al.  Systematische Strukturierung der Bindungsgleichungen mehrschleifiger Mechanismen , 1989 .

[4]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[5]  Narsingh Deo,et al.  Algorithms for Generating Fundamental Cycles in a Graph , 1982, TOMS.

[6]  F. Mehner Automatische Generierung von Rücktransformationen für nichtredundante Roboter , 1990, Robotersysteme.

[7]  Hermann Heiß Theorie und Anwendung der Koordinationtransformation bei Roboterkinematiken , 1987, Inform. Forsch. Entwickl..

[8]  J. G. Jalón,et al.  A comparative study on some different formulations of the dynamic equations of constrained mechanical systems , 1987 .

[9]  R. Paul,et al.  Computationally Efficient Kinematics for Manipulators with Spherical Wrists Based on the Homogeneous Transformation Representation , 1986 .

[10]  E. Kolasińska On a minimum cycle basis of a graph , 1980 .

[11]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[12]  Joseph Douglas Horton,et al.  A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph , 1987, SIAM J. Comput..

[13]  J. Uicker,et al.  An Iterative Method for the Displacement Analysis of Spatial Mechanisms , 1964 .

[14]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .