Modeling the dynamics of complex multibody systems with kinematical transmission elements
暂无分享,去创建一个
[1] Narsingh Deo. Minimum-length fundamental cycle set , 1979 .
[2] F. L. Litvin,et al. Simplification of the Matrix method of linkage analysis by division of a mechanism into unclosed kinematic chains , 1975 .
[3] Manfred Hiller,et al. Systematische Strukturierung der Bindungsgleichungen mehrschleifiger Mechanismen , 1989 .
[4] R. Paul. Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .
[5] Narsingh Deo,et al. Algorithms for Generating Fundamental Cycles in a Graph , 1982, TOMS.
[6] F. Mehner. Automatische Generierung von Rücktransformationen für nichtredundante Roboter , 1990, Robotersysteme.
[7] Hermann Heiß. Theorie und Anwendung der Koordinationtransformation bei Roboterkinematiken , 1987, Inform. Forsch. Entwickl..
[8] J. G. Jalón,et al. A comparative study on some different formulations of the dynamic equations of constrained mechanical systems , 1987 .
[9] R. Paul,et al. Computationally Efficient Kinematics for Manipulators with Spherical Wrists Based on the Homogeneous Transformation Representation , 1986 .
[10] E. Kolasińska. On a minimum cycle basis of a graph , 1980 .
[11] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[12] Joseph Douglas Horton,et al. A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph , 1987, SIAM J. Comput..
[13] J. Uicker,et al. An Iterative Method for the Displacement Analysis of Spatial Mechanisms , 1964 .
[14] Michel Minoux,et al. Graphs and Algorithms , 1984 .