Fast state tomography with optimal error bounds

Projected least squares (PLS) is an intuitive and numerically cheap technique for quantum state tomography. The method first computes the least-squares estimator (or a linear inversion estimator) and then projects the initial estimate onto the space of states. The main result of this paper equips this point estimator with a rigorous, non-asymptotic confidence region expressed in terms of the trace distance. The analysis holds for a variety of measurements, including 2-designs and Pauli measurements. The sample complexity of the estimator is comparable to the strongest convergence guarantees available in the literature and---in the case of measuring the uniform POVM---saturates fundamental lower bounds.The results are derived by reinterpreting the least-squares estimator as a sum of random matrices and applying a matrix-valued concentration inequality. The theory is supported by numerical simulations for mutually unbiased bases, Pauli observables, and Pauli basis measurements.

[1]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[2]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[3]  Robert L. Kosut,et al.  Quantum tomography protocols with positivity are compressed sensing protocols , 2015, npj Quantum Information.

[4]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[5]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[6]  H. J. Mclaughlin,et al.  Learn , 2002 .

[7]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[8]  V. Koltchinskii A remark on low rank matrix recovery and noncommutative Bernstein type inequalities , 2013 .

[9]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[10]  J. van Leeuwen,et al.  Finite Fields and Applications , 2004, Lecture Notes in Computer Science.

[11]  Pierre Alquier,et al.  Rank penalized estimation of a quantum system , 2012, 1206.1711.

[12]  K. N. Dollman,et al.  - 1 , 1743 .

[13]  John A Smolin,et al.  Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. , 2012, Physical review letters.

[14]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[15]  V. Koltchinskii,et al.  Estimation of low rank density matrices: bounds in Schatten norms and other distances , 2016, 1604.04600.

[16]  Holger Rauhut,et al.  Stable low-rank matrix recovery via null space properties , 2015, ArXiv.

[17]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  C. Ross Found , 1869, The Dental register.

[20]  C. Butucea,et al.  Spectral thresholding quantum tomography for low rank states , 2015, 1504.08295.

[21]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[22]  D. Andrews Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .

[23]  M. Murao,et al.  Precision-guaranteed quantum tomography. , 2013, Physical review letters.

[24]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[25]  Renato Renner,et al.  Practical and Reliable Error Bars in Quantum Tomography. , 2015, Physical review letters.

[26]  Zhaoxuan Zhu,et al.  Spatial shape of avalanches. , 2017, Physical review. E.

[27]  N. Tomczak-Jaegermann The moduli of smoothness and convexity and the Rademacher averages of the trace classes $S_{p}$ (1≤p<∞) , 1974 .

[28]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[31]  M. Ježek,et al.  Iterative algorithm for reconstruction of entangled states , 2000, quant-ph/0009093.

[32]  G. Pisier,et al.  Non-Commutative Martingale Inequalities , 1997, math/9704209.

[33]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[34]  Oliver Johnson,et al.  International Symposium on Information Theory , 2007 .

[35]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[36]  Matthias Christandl,et al.  Publisher's Note: Reliable Quantum State Tomography [Phys. Rev. Lett. 109, 120403 (2012)] , 2012 .

[37]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[38]  Dong Xia,et al.  Optimal estimation of low rank density matrices , 2015, J. Mach. Learn. Res..

[39]  J. Tropp Second-Order Matrix Concentration Inequalities , 2015, 1504.05919.

[40]  R. Oliveira Sums of random Hermitian matrices and an inequality by Rudelson , 2010, 1004.3821.

[41]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[42]  G M D'Ariano,et al.  Optimal data processing for quantum measurements. , 2007, Physical review letters.

[43]  D. Gross,et al.  Experimental quantum compressed sensing for a seven-qubit system , 2016, Nature Communications.

[44]  Travis L. Scholten,et al.  Behavior of the maximum likelihood in quantum state tomography , 2016, 1609.04385.

[45]  Jeff Irion,et al.  Applied and computational harmonic analysis on graphs and networks , 2015, SPIE Optical Engineering + Applications.

[46]  Felix Krahmer,et al.  A Partial Derandomization of PhaseLift Using Spherical Designs , 2013, Journal of Fourier Analysis and Applications.

[47]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[48]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[49]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[50]  Holger Rauhut,et al.  Low rank matrix recovery from rank one measurements , 2014, ArXiv.

[51]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[52]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[53]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[54]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. James,et al.  Numerical strategies for quantum tomography: Alternatives to full optimization , 2009 .

[56]  Christopher Granade,et al.  Practical Bayesian tomography , 2015, 1509.03770.

[57]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[58]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[59]  V. Koltchinskii Von Neumann Entropy Penalization and Low Rank Matrix Estimation , 2010, 1009.2439.