暂无分享,去创建一个
Joel A. Tropp | Jonas Kahn | Richard Kueng | Madalin Guta | J. Tropp | R. Kueng | J. Kahn | M. Guţă
[1] D. Vernon. Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.
[2] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[3] Robert L. Kosut,et al. Quantum tomography protocols with positivity are compressed sensing protocols , 2015, npj Quantum Information.
[4] Steven T. Flammia,et al. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.
[5] R. Blume-Kohout. Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.
[6] H. J. Mclaughlin,et al. Learn , 2002 .
[7] Christoph Dankert,et al. Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .
[8] V. Koltchinskii. A remark on low rank matrix recovery and noncommutative Bernstein type inequalities , 2013 .
[9] O. Gühne,et al. 03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .
[10] J. van Leeuwen,et al. Finite Fields and Applications , 2004, Lecture Notes in Computer Science.
[11] Pierre Alquier,et al. Rank penalized estimation of a quantum system , 2012, 1206.1711.
[12] K. N. Dollman,et al. - 1 , 1743 .
[13] John A Smolin,et al. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. , 2012, Physical review letters.
[14] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[15] V. Koltchinskii,et al. Estimation of low rank density matrices: bounds in Schatten norms and other distances , 2016, 1604.04600.
[16] Holger Rauhut,et al. Stable low-rank matrix recovery via null space properties , 2015, ArXiv.
[17] P. Oscar Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.
[18] Andrew G. Glen,et al. APPL , 2001 .
[19] C. Ross. Found , 1869, The Dental register.
[20] C. Butucea,et al. Spectral thresholding quantum tomography for low rank states , 2015, 1504.08295.
[21] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[22] D. Andrews. Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .
[23] M. Murao,et al. Precision-guaranteed quantum tomography. , 2013, Physical review letters.
[24] W. Wootters,et al. Optimal state-determination by mutually unbiased measurements , 1989 .
[25] Renato Renner,et al. Practical and Reliable Error Bars in Quantum Tomography. , 2015, Physical review letters.
[26] Zhaoxuan Zhu,et al. Spatial shape of avalanches. , 2017, Physical review. E.
[27] N. Tomczak-Jaegermann. The moduli of smoothness and convexity and the Rademacher averages of the trace classes $S_{p}$ (1≤p<∞) , 1974 .
[28] Andreas Klappenecker,et al. Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.
[29] Ericka Stricklin-Parker,et al. Ann , 2005 .
[30] D. Gross,et al. Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.
[31] M. Ježek,et al. Iterative algorithm for reconstruction of entangled states , 2000, quant-ph/0009093.
[32] G. Pisier,et al. Non-Commutative Martingale Inequalities , 1997, math/9704209.
[33] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[34] Oliver Johnson,et al. International Symposium on Information Theory , 2007 .
[35] Xiaodi Wu,et al. Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.
[36] Matthias Christandl,et al. Publisher's Note: Reliable Quantum State Tomography [Phys. Rev. Lett. 109, 120403 (2012)] , 2012 .
[37] Z. Hradil. Quantum-state estimation , 1996, quant-ph/9609012.
[38] Dong Xia,et al. Optimal estimation of low rank density matrices , 2015, J. Mach. Learn. Res..
[39] J. Tropp. Second-Order Matrix Concentration Inequalities , 2015, 1504.05919.
[40] R. Oliveira. Sums of random Hermitian matrices and an inequality by Rudelson , 2010, 1004.3821.
[41] Stephen Becker,et al. Quantum state tomography via compressed sensing. , 2009, Physical review letters.
[42] G M D'Ariano,et al. Optimal data processing for quantum measurements. , 2007, Physical review letters.
[43] D. Gross,et al. Experimental quantum compressed sensing for a seven-qubit system , 2016, Nature Communications.
[44] Travis L. Scholten,et al. Behavior of the maximum likelihood in quantum state tomography , 2016, 1609.04385.
[45] Jeff Irion,et al. Applied and computational harmonic analysis on graphs and networks , 2015, SPIE Optical Engineering + Applications.
[46] Felix Krahmer,et al. A Partial Derandomization of PhaseLift Using Spherical Designs , 2013, Journal of Fourier Analysis and Applications.
[47] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[48] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[49] A. J. Scott. Tight informationally complete quantum measurements , 2006, quant-ph/0604049.
[50] Holger Rauhut,et al. Low rank matrix recovery from rank one measurements , 2014, ArXiv.
[51] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[52] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[53] Andreas Klappenecker,et al. Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[54] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[55] D. James,et al. Numerical strategies for quantum tomography: Alternatives to full optimization , 2009 .
[56] Christopher Granade,et al. Practical Bayesian tomography , 2015, 1509.03770.
[57] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[58] M. Talagrand. The Generic chaining : upper and lower bounds of stochastic processes , 2005 .
[59] V. Koltchinskii. Von Neumann Entropy Penalization and Low Rank Matrix Estimation , 2010, 1009.2439.