Reduction potential calculations of the Fe–S clusters in Thermus thermophilus respiratory complex I

Respiratory complex I facilitates electron transfer from NADH to quinone over ~95 Å through a chain of seven iron–sulfur (Fe–S) clusters in the respiratory chain. In this study, the reduction potentials of the Fe–S clusters in Thermus thermophilus complex I are calculated using a Density Functional Theory + Poisson–Boltzmann method. Our results indicate that the reduction potentials are influenced by a variety of factors including the clusters being deeply buried in the complex and the protonation state of buried ionizable residues. In addition, as several of the ionizable side chains have predicted pKa values near pH 7, relatively small structural fluctuations could lead to significant (0.2 V) shifts in the reduction potential of several of the Fe–S clusters, suggesting a dynamic mechanism for electron transfer. Moreover, the method used here is a useful computational tool to study other questions about complex I. © 2019 Wiley Periodicals, Inc.

[1]  Toshiko Ichiye,et al.  Identifying residues that cause pH-dependent reduction potentials. , 2013, Biochemistry.

[2]  John M. Berrisford,et al.  Crystal structure of the entire respiratory complex I , 2013, Nature.

[3]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[4]  M. Wikström,et al.  Electrostatic interactions between FeS clusters in NADH:ubiquinone oxidoreductase (Complex I) from Escherichia coli. , 2008, Biochemistry.

[5]  T. Yagi,et al.  Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) subunit of NADH:ubiquinone oxidoreductase (complex I). , 2002, Biochemistry.

[6]  J. Hirst Towards the molecular mechanism of respiratory complex I. , 2010, The Biochemical journal.

[7]  Philip Hinchliffe,et al.  Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.

[8]  L. Sazanov A structural perspective on respiratory complex I : structure and function of NADH:ubiquinone oxidoreductase , 2012 .

[9]  L. Sazanov,et al.  Identification of a novel subunit of respiratory complex I from Thermus thermophilus. , 2006, Biochemistry.

[10]  G. Degliesposti,et al.  Atomic structure of the entire mammalian mitochondrial complex I , 2016, Nature.

[11]  T. Yagi,et al.  Characterization of Cluster N5 as a Fast-relaxing [4Fe-4S] Cluster in the Nqo3 Subunit of the Proton-translocating NADH-ubiquinone Oxidoreductase from Paracoccus denitrificans * , 2003, The Journal of Biological Chemistry.

[12]  R. Prince,et al.  Electrochemistry of ubiquinones , 1983 .

[13]  Toshiko Ichiye,et al.  Fold versus sequence effects on the driving force for protein‐mediated electron transfer , 2010, Proteins.

[14]  A. Schapira,et al.  Human complex I defects in neurodegenerative diseases. , 1998, Biochimica et biophysica acta.

[15]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[16]  T. Ichiye,et al.  Protein dynamics and the all‐ferrous [Fe4 S 4] cluster in the nitrogenase iron protein , 2015, Protein science : a publication of the Protein Society.

[17]  L. Sazanov,et al.  Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. , 2007, Biochemistry.

[18]  T. Yagi,et al.  EPR characterization of the iron-sulfur clusters in the NADH: ubiquinone oxidoreductase segment of the respiratory chain in Paracoccus denitrificans. , 1987, The Journal of biological chemistry.

[19]  Tammer A. Farid,et al.  Electron tunneling chains of mitochondria. , 2006, Biochimica et biophysica acta.

[20]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[21]  Characterizing the effects of the protein environment on the reduction potentials of metalloproteins , 2012, JBIC Journal of Biological Inorganic Chemistry.

[22]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[23]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[24]  F. Armstrong,et al.  Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron–electron resonance , 2010, Proceedings of the National Academy of Sciences.

[25]  J. Hirst,et al.  Mössbauer Spectroscopy on Respiratory Complex I: The Iron–Sulfur Cluster Ensemble in the NADH-Reduced Enzyme Is Partially Oxidized , 2011, Biochemistry.

[26]  W. Fawcett The ionic work function and its role in estimating absolute electrode potentials. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[27]  E. Nakamaru-Ogiso,et al.  Were there any "misassignments" among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)? , 2008, Biochimica et biophysica acta.

[28]  Toshiko Ichiye,et al.  Calculating standard reduction potentials of [4Fe–4S] proteins , 2013, J. Comput. Chem..

[29]  H. Schwalbe,et al.  Mechanistic insight from the crystal structure of mitochondrial complex I , 2015, Science.

[30]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[31]  T. Reda,et al.  Reduction of the iron-sulfur clusters in mitochondrial NADH:ubiquinone oxidoreductase (complex I) by EuII-DTPA, a very low potential reductant. , 2008, Biochemistry.

[32]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[33]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[34]  J. Hirst,et al.  Investigating the function of [2Fe–2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential , 2013, The Biochemical journal.

[35]  T. Yagi,et al.  Studies on the NADH-menaquinone oxidoreductase segment of the respiratory chain in Thermus thermophilus HB-8. , 1990, The Journal of biological chemistry.

[36]  T. Ohnishi,et al.  Iron-sulfur clusters/semiquinones in complex I. , 1998, Biochimica et biophysica acta.

[37]  L. Sazanov,et al.  Structural Basis for the Mechanism of Respiratory Complex I* , 2009, The Journal of Biological Chemistry.

[38]  U. Brandt,et al.  The Redox-Bohr Group Associated with Iron-Sulfur Cluster N2 of Complex I* , 2006, Journal of Biological Chemistry.

[39]  Peter L. Freddolino,et al.  Dynamic switching mechanisms in LOV1 and LOV2 domains of plant phototropins. , 2006, Biophysical journal.

[40]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[41]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[42]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[43]  Allan D. Headley,et al.  A scale of directional substituent polarizability parameters from ab initio calculations of polarizability potentials , 1986 .

[44]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[45]  J. Hirst,et al.  Structure of mammalian respiratory complex I , 2016, Nature.

[46]  T. Ichiye,et al.  Density functional theory calculations of redox properties of iron–sulphur protein analogues , 2011 .

[47]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[48]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[49]  Adam Heller,et al.  The absolute potential of the standard hydrogen electrode: a new estimate , 1985 .

[50]  T. Friedrich,et al.  Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. , 1995, European journal of biochemistry.

[51]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Ohnishi,et al.  An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. , 1980, The Biochemical journal.