Random mutagenesis of protein sequences using oligonucleotide cassettes.

[1]  R. Sauer,et al.  Carboxy-terminal determinants of intracellular protein degradation. , 1990, Genes & development.

[2]  J U Bowie,et al.  Identification of C-terminal extensions that protect proteins from intracellular proteolysis. , 1989, The Journal of biological chemistry.

[3]  T. Kunkel,et al.  The use of native T7 DNA polymerase for site-directed mutagenesis. , 1989, Nucleic acids research.

[4]  R. Sauer,et al.  The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. , 1989, The Journal of biological chemistry.

[5]  E. Chen,et al.  Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. , 1985, DNA.

[6]  Jordan,et al.  Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions , 1988, Science.

[7]  D. Seto,et al.  An improved method for sequencing double stranded plasmid DNA from minipreps using DMSO and modified template preparation. , 1990, Nucleic acids research.

[8]  R. Zagursky,et al.  Cloning vectors that yield high levels of single-stranded DNA for rapid DNA sequencing. , 1984, Gene.

[9]  James C. Hu,et al.  Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. , 1990, Science.

[10]  M. Vasser,et al.  Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. , 1985, Gene.

[11]  K. Struhl,et al.  Cloning of random-sequence oligodeoxynucleotides. , 1986, Gene.

[12]  I. Tinoco,et al.  Base pairing involving deoxyinosine: implications for probe design. , 1985, Nucleic acids research.

[13]  R. Sauer,et al.  Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. , 1988, Science.

[14]  J. Wells,et al.  High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. , 1989, Science.

[15]  R. Sauer,et al.  Mutational analysis of the fine specificity of binding of monoclonal antibody 51F to lambda repressor. , 1989, The Journal of biological chemistry.

[16]  Robert T. Sauer,et al.  Functionally acceptable substitutions in two α‐helical regions of λ repressor , 1990, Proteins.

[17]  H. Khorana,et al.  Structure-function studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. , 1987, Journal of Biological Chemistry.

[18]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[19]  R. Sauer,et al.  Amino acid substitutions that increase the thermal stability of the λ Cro protein , 1989 .

[20]  Marianne Manchester,et al.  Complete mutagenesis of the HIV-1 protease , 1989, Nature.

[21]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[22]  R. Sauer,et al.  Interaction of mutant λ repressors with operator and non-operator DNA , 1986 .

[23]  R. Sauer,et al.  An essential proline in lambda repressor is required for resistance to intracellular proteolysis. , 1990, Biochemistry.

[24]  W. Lim,et al.  The role of internal packing interactions in determining the structure and stability of a protein. , 1991, Journal of molecular biology.

[25]  E. Chen,et al.  Supercoil sequencing: a fast method for sequencing plasmid DNA , 1985 .

[26]  W. Lim,et al.  Alternative packing arrangements in the hydrophobic core of λrepresser , 1989, Nature.

[27]  F. Bushman,et al.  A single glutamic acid residue plays a key role in the transcriptional activation function of lambda repressor , 1989, Cell.