Existence results for the flow of viscoelastic fluids with a differential constitutive law

where 2 is the (symmetric) extra-stress tensor (the total stress is given by g = -pL + I, where p is the hydrodynamic pressure); 4 is the rate of deformation tensor, g[u] = *(Vu + Vu’), u being the velocity field; A, is the relaxation time, A2 the retardation time, 0 I A, < A1 ; and Q is the fluid viscosity. The symbol a),/d)t denotes an objective (frame indifferent) derivative [I, 181. More precisely,

[1]  Michael Renardy Existence of Slow Steady Flows of Viscoelastic Fluids with Differential Constitutive Equations , 1984 .

[2]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  J. Serrin A note on the exstencie of periodic solutions of the Navier-Stokes equations , 1959 .

[5]  R. Larson A critical comparison of constitutive equations for polymer melts , 1987 .

[6]  D. Joseph,et al.  Principles of non-Newtonian fluid mechanics , 1974 .

[7]  Michael Renardy,et al.  Mathematical problems in viscoelasticity , 1987 .

[8]  J. Saut,et al.  Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type , 1990 .

[9]  Alberto Valli,et al.  Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method , 1983 .

[10]  R. Tanner,et al.  A new constitutive equation derived from network theory , 1977 .

[11]  Till Förster Glänzend wie Gold : Gelbguss bei den Senufo, Elfenbeinküste , 1989 .

[12]  J. Saut,et al.  Change of type and loss of evolution in the flow of viscoelastic fluids , 1986 .

[13]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  A. I. Leonov Nonequilibrium thermodynamics and rheology of viscoelastic polymer media , 1976 .

[15]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[16]  M. Crochet,et al.  On the consequence of discretization errors in the numerical calculation of viscoelastic flow , 1985 .

[17]  H. Giesekus A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent molecular mobility , 1982 .

[18]  Haim Brezis,et al.  Remarks on the Euler equation , 1974 .

[19]  J. Saut,et al.  Hyperbolicity and change of type in the flow of viscoelastic fluids. Technical summary report , 1984 .