Sparse Bayesian Learning-Based Time-Variant Deconvolution

In seismic exploration, the wavelet-filtering effect and <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-filtering (amplitude attenuation and velocity dispersion) effect blur the reflection image of subsurface layers. Therefore, both wavelet- and <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-filtering effects should be reduced to retrieve a high-quality subsurface image, which is significant for fine reservoir interpretation. We derive a nonlinear time-variant convolution model to sparsely represent nonstationary seismograms in time domain involving these two effects and present a time-variant deconvolution (TVD) method based on sparse Bayesian learning (SBL) to solve the model to obtain a high-quality reflectivity image. The SBL-based TVD essentially obtains an optimum posterior mean of the reflectivity image, which is regarded as the inverted reflectivity result, by iteratively solving a Bayesian maximum posterior and a type-II maximum likelihood. Because a hierarchical Gaussian prior for reflectivity controlled by model-dependent hyper-parameters is adopted to approximately represent the fact that reflectivity is sparse, SBL-based TVD can retrieve a sparse reflectivity image through the principled sequential addition and deletion of <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-dependent time-variant wavelets. In general, strong reflectors are acquired relatively earlier, whereas weak reflectors and deep reflectors are imaged later. The method has the capacity to avoid false artifacts represented by sequential positive or negative reflectivity spikes with short two-way travel time, which typically occur within stationary deconvolution outcomes. Synthetic, laboratorial, and field data examples are used to demonstrate the effectiveness of the method and illustrate its advantages over SBL-based stationary deconvolution and TVD using an <inline-formula> <tex-math notation="LaTeX">$l_{2}$ </tex-math></inline-formula>-norm or an <inline-formula> <tex-math notation="LaTeX">$l_{1}$ </tex-math></inline-formula>-norm regularization. The results show that SBL-based TVD is a potentially effective, stable, and high-quality imaging tool.

[1]  R. Tonn,et al.  THE DETERMINATION OF THE SEISMIC QUALITY FACTOR Q FROM VSP DATA: A COMPARISON OF DIFFERENT COMPUTATIONAL METHODS1 , 1991 .

[2]  M. B. Dusseault,et al.  Regularisation of nonlinear inverse problems: imaging the near-surface weathering layer , 2016 .

[3]  Cheng-Yuan Liou,et al.  Dynamic Positron Emission Tomography Data-Driven Analysis Using Sparse Bayesian Learning , 2008, IEEE Transactions on Medical Imaging.

[4]  Fernando S. Moraes,et al.  High-resolution gathers by inverse Q filtering in the wavelet domain , 2013 .

[5]  Ilya Silvestrov,et al.  Full‐waveform inversion for macro velocity model reconstruction in look‐ahead offset vertical seismic profile: numerical singular value decomposition‐based analysis , 2013 .

[6]  M. N. Toksöz,et al.  Elastic wave radiation and diffraction of a piston source , 1990 .

[7]  Tadeusz J. Ulrych,et al.  A Bayes tour of inversion: A tutorial , 2001 .

[8]  A. Berkhout,et al.  The seismic method in the search for oil and gas: Current techniques and future developments , 1986, Proceedings of the IEEE.

[9]  Zheng Bao,et al.  Superresolution ISAR Imaging Based on Sparse Bayesian Learning , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Ming Ma,et al.  Wavelet phase estimation using ant colony optimization algorithm , 2015 .

[11]  Mauricio D. Sacchi,et al.  Reweighting strategies in seismic deconvolution , 1997 .

[12]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[13]  Sven Treitel,et al.  Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing , 2008 .

[14]  Sanyi Yuan,et al.  Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints , 2013 .

[15]  N. Hargreaves,et al.  Inverse Q filtering by Fourier transform , 1991 .

[16]  Erick Baziw,et al.  Principle phase decomposition: a new concept in blind seismic deconvolution , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Shangxu Wang,et al.  Reservoir fluid substitution effects on seismic profile interpretation: A physical modeling experiment , 2010 .

[18]  Begüm Demir,et al.  Hyperspectral Image Classification Using Relevance Vector Machines , 2007, IEEE Geoscience and Remote Sensing Letters.

[19]  A. T. Walden,et al.  The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution , 1986 .

[20]  Sanyi Yuan,et al.  Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation , 2016 .

[21]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[22]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[23]  Leandro Passos de Figueiredo,et al.  Bayesian Framework to Wavelet Estimation and Linearized Acoustic Inversion , 2014, IEEE Geoscience and Remote Sensing Letters.

[24]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[25]  Kurt J. Marfurt,et al.  Enhancing the resolution of non-stationary seismic data using improved time-frequency spectral modelling , 2016 .

[26]  Sanyi Yuan,et al.  Random noise reduction using Bayesian inversion , 2012 .

[27]  P. Riel,et al.  Lp-NORM DECONVOLUTION1 , 1990 .

[28]  Felix J. Herrmann,et al.  Dimensionality‐reduced estimation of primaries by sparse inversion , 2014 .

[29]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[30]  Mirko van der Baan,et al.  Nonstationary phase estimation using regularized local kurtosis maximization , 2009 .

[31]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[32]  Wei Huang,et al.  Absorption decomposition and compensation via a two-step scheme , 2015 .

[33]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[34]  Israel Cohen,et al.  Multichannel Seismic Deconvolution Using Markov–Bernoulli Random-Field Modeling , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Ali Gholami Semi-blind nonstationary deconvolution: Joint reflectivity and Q estimation , 2015 .

[36]  Tadeusz J. Ulrych,et al.  Processing via spectral modeling , 1991 .

[37]  Xiaohong Chen,et al.  Absorption-compensation method by l1-norm regularization , 2014 .

[38]  Bhaskar D. Rao,et al.  Comparing the Effects of Different Weight Distributions on Finding Sparse Representations , 2005, NIPS.

[39]  Rafat R. Ansari,et al.  Sparse Bayesian learning for the Laplace transform inversion in dynamic light scattering , 2011, J. Comput. Appl. Math..

[40]  A. J. Berkhout,et al.  LEAST‐SQUARES INVERSE FILTERING AND WAVELET DECONVOLUTION , 1977 .

[41]  Sanyi Yuan,et al.  Spectral sparse Bayesian learning reflectivity inversion , 2013 .

[42]  Bernardete Ribeiro,et al.  Scaling Text Classification with Relevance Vector Machines , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[43]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[44]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[45]  J. Mendel,et al.  Maximum-Likelihood Seismic Deconvolution , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[46]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[47]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[48]  Yanghua Wang,et al.  Inverse Q-filter for seismic resolution enhancement , 2006 .

[49]  Simon Rogers,et al.  A First Course in Machine Learning , 2011, Chapman and Hall / CRC machine learning and pattern recognition series.

[50]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[51]  S. Bickel,et al.  Plane-wave Q deconvolution , 1985 .

[52]  Shoudong Wang Attenuation compensation method based on inversion , 2011 .

[53]  Wagner Moreira Lupinacci,et al.  L1 norm inversion method for deconvolution in attenuating media , 2013 .

[54]  Mauro Roisenberg,et al.  Fast Seismic Inversion Methods Using Ant Colony Optimization Algorithm , 2013, IEEE Geoscience and Remote Sensing Letters.

[55]  Andrew Blake,et al.  Sparse Bayesian learning for efficient visual tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Tadeusz J. Ulrych,et al.  Seismic absorption compensation: A least squares inverse scheme , 2007 .

[57]  P. Riel,et al.  Lp-Norm Deconvolution , 1989 .

[58]  Mirko van der Baan,et al.  Time-varying wavelet estimation and deconvolution by kurtosis maximization , 2008 .

[59]  Yangkang Chen,et al.  Double Sparsity Dictionary for Seismic Noise Attenuation , 2016 .

[60]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[61]  Antonio Artés-Rodríguez,et al.  Deconvolution of seismic data using adaptive Gaussian mixtures , 1999, IEEE Trans. Geosci. Remote. Sens..