Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest

Among other applications, the study of thermal properties of large networks of carbon nanoparticles may have a critical impact in loss-free, more compact and efficient thermal storage systems, as well as thermally conducting polymeric materials for innovative low-cost heat exchangers. In this respect, here, we both review and numerically investigate the impact that nanotechnology (and in particular carbon-based nanostructures) may have in the near future. In particular, we focus on the role played by some geometrical and chemical parameters on the overall thermal transmittance of large complex networks made up of carbon nanotubes (CNTs), that can be potentially added as fillers to (thermally) low-conductive materials for enhancing the transport properties. Several configurations consisting of sole and pairs of single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs), characterized by different dimensions and number of C–O–C interlinks, are considered. Based on the results found in the literature and using focused simulations using standard approaches in Non-Equilibrium Molecular Dynamics (NEMD), we highlight the dependence on the particle diameter, length, overlap and functionalizations of both thermal conductivity and boundary resistance across CNTs, which are indeed the relevant quantities for obtaining composite materials with desired unusual thermal properties. We observe that CNTs with short overlap length and a few interlinks already show a remarkable enhancement in the overall transmittance, whereas further increase in the number of C–O–C connections only carries marginal benefits. We believe that much understanding has been gained so far in this field thanks to the work of chemists and material scientists, thus it is time to draw the attention of engineers active in the energy sector and thermal scientists on such findings. Our effort, therefore, is to gather in this article some guidelines towards innovative thermal systems that may be manufactured and employed in the near future for addressing a great challenge of our society: Storage and use of thermal energy.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  William A. Goddard,et al.  Prediction of fullerene packing in C60 and C70 crystals , 1991, Nature.

[3]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[4]  D. F. Ogletree,et al.  Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces , 2014, Nature Communications.

[5]  Bodo Fiedler,et al.  Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites , 2006 .

[6]  Eric Pop,et al.  Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO 2 , 2010 .

[7]  Zheng Li,et al.  Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes , 2006 .

[8]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[9]  Dimitris C. Lagoudas,et al.  Characterization of electrical and thermal properties of carbon nanotube/epoxy composites , 2014 .

[10]  H. Sevinçli,et al.  Phonon engineering in carbon nanotubes by controlling defect concentration. , 2011, Nano letters.

[11]  F. Kowsary,et al.  Thermal rectification in multi-walled carbon nanotubes: A molecular dynamics study , 2011 .

[12]  Kiarash Gordiz,et al.  Thermal rectification in pristine-hydrogenated carbon nanotube junction: A molecular dynamics study , 2014 .

[13]  F. S. Javadi,et al.  Investigating performance improvement of solar collectors by using nanofluids , 2013 .

[14]  Baowen Li,et al.  Thermal conduction of carbon nanotubes using molecular dynamics , 2005 .

[15]  L. Zhigilei,et al.  Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes , 2013 .

[16]  Yogendra Joshi,et al.  Characterization of nanostructured thermal interface materials – A review , 2012 .

[17]  D. Papavassiliou,et al.  Heat transfer in high volume fraction CNT nanocomposites: Effects of inter-nanotube thermal resistance , 2011 .

[18]  X. Ruan,et al.  The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes , 2012 .

[19]  B. Cao,et al.  Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling , 2013 .

[20]  R. Ishihara,et al.  Dominant thermal boundary resistance in multi-walled carbon nanotube bundles fabricated at low temperature , 2014 .

[21]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[22]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[23]  Michael C. Böhm,et al.  The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations , 2009, Nanotechnology.

[24]  L. Shao,et al.  Introducing thermally stable inter-tube defects to assist off-axial phonon transport in carbon nanotube films , 2014 .

[25]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[26]  Pietro Asinari,et al.  Scaling behaviour for the water transport in nanoconfined geometries , 2014, Nature Communications.

[27]  Zhiyuan Zhu,et al.  Thermal conductivity of functionalized single-wall carbon nanotubes , 2007 .

[28]  V. Varshney,et al.  Modeling of interface thermal conductance in longitudinally connected carbon nanotube junctions , 2011 .

[29]  Petros Koumoutsakos,et al.  Carbon nanotubes in water:structural characteristics and energetics , 2001 .

[30]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[31]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[32]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[33]  D. Mutharasu,et al.  Thermal resistance of CNTs-based thermal interface material for high power solid state device packages , 2014 .

[34]  J. Hinkley,et al.  Multiscale modeling of thermal conductivity of polymer/carbon nanocomposites , 2010 .

[35]  J. Ginder,et al.  Thermal Conductivity of Single-Wall Carbon Nanotube Dispersions: Role of Interfacial Effects , 2008 .

[36]  Ronggui Yang,et al.  Thermal transport across carbon nanotubes connected by molecular linkers , 2012 .

[37]  Guillermo Rus,et al.  Nanotechnology for sustainable energy , 2009 .

[38]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[39]  G. Ding,et al.  Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants , 2009 .

[40]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[41]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[42]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[43]  D. Ackermann,et al.  Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat , 2004 .

[44]  M. Dresselhaus,et al.  Electronic, thermal and mechanical properties of carbon nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Florian Müller-Plathe,et al.  Reverse Non-equilibrium Molecular Dynamics , 2004 .

[46]  D. Tang,et al.  Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure , 2013 .

[47]  Lin Gan,et al.  Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors , 2010 .

[48]  Kenneth E. Goodson,et al.  Thermal conduction phenomena in carbon nanotubes and related nanostructured materials , 2013 .

[49]  Deyu Li,et al.  Contact thermal resistance between individual multiwall carbon nanotubes , 2010 .

[50]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[51]  Jay M. Khodadadi,et al.  Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review , 2013 .

[52]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[53]  I. Puri,et al.  Thermal transport through a fluid-solid interface , 2009 .

[54]  S. Marder,et al.  A Pyrenylpropyl Phosphonic Acid Surface Modifier for Mitigating the Thermal Resistance of Carbon Nanotube Contacts , 2014 .

[55]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[56]  S. Mahapatra,et al.  Physics-Based Thermal Conductivity Model for Metallic Single-Walled Carbon Nanotube Interconnects , 2011, IEEE Electron Device Letters.

[57]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[58]  V. Varshney,et al.  Modeling of Thermal Conductance at Transverse CNT−CNT Interfaces , 2010 .

[59]  Hansong Cheng,et al.  Designing carbon nanoframeworks tailored for hydrogen storage , 2007 .

[60]  B. Tay,et al.  Thermal conductivity of individual multiwalled carbon nanotubes , 2012 .

[61]  I. Singh,et al.  Effect of interface on the thermal conductivity of carbon nanotube composites , 2007 .

[62]  P. Asinari,et al.  Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids? , 2011, Nanoscale research letters.

[63]  S. M. Sohel Murshed,et al.  Superior thermal features of carbon nanotubes-based nanofluids – A review , 2014 .

[64]  Sergei O. Kucheyev,et al.  Mechanically robust and electrically conductive carbon nanotube foams , 2009 .

[65]  Thomas W. Kenny,et al.  Mechanical characterization of aligned multi-walled carbon nanotube films using microfabricated resonators , 2012 .

[66]  Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. , 2005, The Journal of chemical physics.

[67]  P. Ajayan,et al.  Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate , 2008 .

[68]  Seon Jeong Kim,et al.  All-solid-state carbon nanotube torsional and tensile artificial muscles. , 2014, Nano letters.

[69]  Saad Mekhilef,et al.  Solar energy harvesting with the application of nanotechnology , 2013 .

[70]  Xin-xin Zhang,et al.  Numerical Study of Thermal Conductivities of Carbon-Based Mesoporous Composites , 2014 .

[71]  Arun Majumdar,et al.  Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study , 2002 .

[72]  E. Bekyarova,et al.  Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites , 2008 .

[73]  Ketan S Khare,et al.  Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions. , 2014, ACS applied materials & interfaces.

[74]  Jun Lin,et al.  Multiwalled carbon nanotubes and NaYF4:Yb3+/Er3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[75]  W. Evans,et al.  Inter-tube thermal conductance in carbon nanotubes arrays and bundles: Effects of contact area and pressure , 2012 .

[76]  Hansong Cheng,et al.  Spontaneous Cross Linking of Small-Diameter Single-Walled Carbon Nanotubes , 2003 .

[77]  D. Papavassiliou,et al.  Thermal transport phenomena and limitations in heterogeneous polymer composites containing carbon nanotubes and inorganic nanoparticles , 2014 .

[78]  Yong-Wei Zhang,et al.  A theoretical analysis of the thermal conductivity of hydrogenated graphene , 2011 .

[79]  Xing Zhang,et al.  Direct evaluation of ballistic phonon transport in a multi-walled carbon nanotube , 2014 .

[80]  A. Balandin,et al.  Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. , 2013, ACS nano.

[81]  Jun Xu,et al.  Photoacoustic characterization of carbon nanotube array thermal interfaces , 2007 .

[82]  Y. Bayazitoglu,et al.  Nose–Hoover thermostat length effect on thermal conductivity of single wall carbon nanotubes , 2010 .

[83]  D. Papavassiliou,et al.  Thermal boundary resistance at the graphene–graphene interface estimated by molecular dynamics simulations , 2012 .

[84]  J. Templeton,et al.  Dependencies of the thermal conductivity of individual single-walled carbon nanotubes , 2010 .

[85]  M. Buehler,et al.  Nanoengineering heat transfer performance at carbon nanotube interfaces. , 2009, ACS nano.

[86]  Yue-Tzu Yang,et al.  The effects of vacancy defects and nitrogen doping on the thermal conductivity of armchair (10,10) single-wall carbon nanotubes , 2011 .

[87]  Pietro Asinari,et al.  Reconstruction and modeling of 3D percolation networks of carbon fillers in a polymer matrix , 2010 .

[88]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[89]  Shuijian He,et al.  Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers , 2013 .

[90]  D. Jiang,et al.  Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study. , 2014, Physical chemistry chemical physics : PCCP.