TiO2 nanosheets anchoring on carbon nanotubes for fast sodium storage

[1]  Xiaobo Ji,et al.  Plasma‐Induced Amorphous Shell and Deep Cation‐Site S Doping Endow TiO2 with Extraordinary Sodium Storage Performance , 2018, Advanced materials.

[2]  Yan Yu,et al.  Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage , 2018 .

[3]  Zhen-bo Wang,et al.  Pseudocapacitance of TiO2-x /CNT Anodes for High-Performance Quasi-Solid-State Li-Ion and Na-Ion Capacitors. , 2018, Small.

[4]  D. Zhao,et al.  Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. , 2018, Journal of the American Chemical Society.

[5]  X. Sun,et al.  Ultrahigh Rate and Long‐Life Sodium‐Ion Batteries Enabled by Engineered Surface and Near‐Surface Reactions , 2018, Advanced materials.

[6]  K. Amine,et al.  Structure-dependent Performance of TiO 2 /C as Anode Material for Na-ion Batteries , 2018 .

[7]  Zonghai Chen,et al.  Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. , 2018, Nano letters.

[8]  Dongliang Chao,et al.  Nonaqueous Hybrid Lithium‐Ion and Sodium‐Ion Capacitors , 2017, Advanced materials.

[9]  Kai Xi,et al.  Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries , 2017, Advances in Materials.

[10]  Yu Zhang,et al.  Alloy‐Based Anode Materials toward Advanced Sodium‐Ion Batteries , 2017, Advanced materials.

[11]  D. Yan,et al.  Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries , 2017 .

[12]  Qian Sun,et al.  Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers , 2017 .

[13]  Yi Cui,et al.  High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate , 2017 .

[14]  Zhen Zhou,et al.  Fast Sodium Storage in TiO2@CNT@C Nanorods for High‐Performance Na‐Ion Capacitors , 2017 .

[15]  K. Kang,et al.  Using First‐Principles Calculations for the Advancement of Materials for Rechargeable Batteries , 2017 .

[16]  Jianneng Liang,et al.  Ultrafine MoO2‐Carbon Microstructures Enable Ultralong‐Life Power‐Type Sodium Ion Storage by Enhanced Pseudocapacitance , 2017 .

[17]  Christopher W. Foster,et al.  Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors , 2017 .

[18]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[19]  Chunsheng Wang,et al.  Structure–Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance , 2017, Advanced materials.

[20]  Chunsheng Wang,et al.  Pipe-Wire TiO2-Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries. , 2017, Nano letters.

[21]  Guobao Xu,et al.  Free-standing Hierarchical Porous Assemblies of Commercial TiO2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries , 2017 .

[22]  Bing Sun,et al.  Hierarchical Porous Carbon Spheres for High‐Performance Na–O2 Batteries , 2017, Advanced materials.

[23]  H. Wu,et al.  Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO2-Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors. , 2017, ACS nano.

[24]  Xiaobo Ji,et al.  Nitrogen Doped/Carbon Tuning Yolk‐Like TiO2 and Its Remarkable Impact on Sodium Storage Performances , 2017 .

[25]  Yang Xu,et al.  Understanding the Orderliness of Atomic Arrangement toward Enhanced Sodium Storage , 2016 .

[26]  Jun Chen,et al.  Graphene‐Rich Wrapped Petal‐Like Rutile TiO2 tuned by Carbon Dots for High‐Performance Sodium Storage , 2016, Advanced materials.

[27]  Haoshen Zhou,et al.  Recent advances in titanium-based electrode materials for stationary sodium-ion batteries , 2016 .

[28]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[29]  Xiaobo Ji,et al.  Large‐Area Carbon Nanosheets Doped with Phosphorus: A High‐Performance Anode Material for Sodium‐Ion Batteries , 2016, Advanced science.

[30]  Yunhui Huang,et al.  Nanostructured Ti-based anode materials for Na-ion batteries , 2016 .

[31]  C. Bergmann,et al.  Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition. , 2016, ACS applied materials & interfaces.

[32]  Yuekun Lai,et al.  A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications , 2016 .

[33]  Jong Won Chung,et al.  A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self‐Healing Elastic Polymer , 2016, Advanced materials.

[34]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[35]  Yan Zhang,et al.  Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium‐Ion Batteries with Ultralong Cycle Life , 2015, Advanced materials.

[36]  Zhian Zhang,et al.  TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries , 2015 .

[37]  Xiaobo Ji,et al.  Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres , 2015 .

[38]  Jang‐Yeon Hwang,et al.  Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes , 2015 .

[39]  Xiulei Ji,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[40]  Xiaobo Ji,et al.  Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes , 2015 .

[41]  Yu Zhou,et al.  Amorphous carbon coated TiO2 nanocrystals embedded in a carbonaceous matrix derived from polyvinylpyrrolidone decomposition for improved Li-storage performance , 2014 .

[42]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[43]  Betar M. Gallant,et al.  Synthesis of highly stable sub-8 nm TiO2 nanoparticles and their multilayer electrodes of TiO2/MWNT for electrochemical applications. , 2013, Nano letters.

[44]  Yunhui Huang,et al.  Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries , 2013 .

[45]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[46]  S. Dou,et al.  Reduced graphene oxide with superior cycling stability and rate capability for sodium storage , 2013 .

[47]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[48]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[49]  J. Chen,et al.  One‐Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium‐Storage Properties , 2011 .

[50]  X. Lou,et al.  Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. , 2011, ACS nano.

[51]  Horst Kisch,et al.  The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. , 2008, Angewandte Chemie.

[52]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[53]  M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[54]  Longwei Yin,et al.  One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance , 2016 .

[55]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[56]  H. Estrade-szwarckopf XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak , 2004 .