21 cm cosmology in the 21st century

Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines.

[1]  Va,et al.  Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2008, 0901.0570.

[2]  Vanessa Hill,et al.  An extremely primitive star in the Galactic halo , 2011, Nature.

[3]  Harvard,et al.  Constraints on the redshift evolution of the LX–SFR relation from the cosmic X-ray backgrounds , 2011, 1108.4420.

[4]  Cambridge,et al.  An MCMC approach to extracting the global 21‐cm signal during the cosmic dawn from sky‐averaged radio observations , 2011, 1107.3154.

[5]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[6]  M. Dopita,et al.  Re-ionizing the universe without stars , 2011, 1106.5546.

[7]  B. Ciardi,et al.  Population III stars and the Long Gamma Ray Burst rate , 2011, 1106.1439.

[8]  Xian Gao Conserved cosmological perturbation in Galileon models , 2011, 1106.0292.

[9]  R. Souza,et al.  Population III.1 and III.2 gamma-Ray Bursts: Constraints on the event rate for future radio and X-ray surveys , 2011, 1105.2395.

[10]  M. Kaplinghat,et al.  Primordial non-Gaussianity from the 21 cm power spectrum during the epoch of reionization. , 2011, Physical review letters.

[11]  D. Schaerer,et al.  THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES , 2011, 1105.0921.

[12]  Hy Trac,et al.  Demonstrating the feasibility of line intensity mapping using mock data of galaxy clustering from simulations , 2011, 1104.4809.

[13]  James Aguirre,et al.  INTENSITY MAPPING WITH CARBON MONOXIDE EMISSION LINES AND THE REDSHIFTED 21 cm LINE , 2011, 1104.4800.

[14]  P. Shapiro,et al.  Redshift-space distortion of the 21-cm background from the epoch of reionization – I. Methodology re-examined , 2011, 1104.2094.

[15]  R. Cen,et al.  Probing the first galaxies with the Square Kilometer Array , 2011 .

[16]  Max Tegmark,et al.  A method for 21 cm power spectrum estimation in the presence of foregrounds , 2011, Physical Review D.

[17]  A. Morandi,et al.  Studying cosmic reionization with observations of the global 21-cm signal , 2011, 1102.2378.

[18]  A. Loeb,et al.  Stellar black holes at the dawn of the universe , 2011, 1102.1891.

[19]  A. Meiksin The micro‐structure of the intergalactic medium – I. The 21 cm signature from dynamical minihaloes , 2011, 1102.1362.

[20]  C. L. Carilli,et al.  INTENSITY MAPPING OF MOLECULAR GAS DURING COSMIC REIONIZATION , 2011, 1102.0745.

[21]  J. Wyithe,et al.  Detecting the redshifted 21cm forest during reionization , 2011, 1101.5431.

[22]  A. Maselli,et al.  Enabling parallel computing in crash , 2011, 1101.4127.

[23]  Asantha Cooray,et al.  PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.

[24]  A. Loeb,et al.  EFFECT OF STREAMING MOTION OF BARYONS RELATIVE TO DARK MATTER ON THE FORMATION OF THE FIRST STARS , 2010, 1011.4512.

[25]  R. Sunyaev,et al.  The collective X‐ray luminosity of HMXB as a SFR indicator , 2010, 1009.4873.

[26]  A. Loeb,et al.  Inflation and the scale dependent spectral index: prospects and strategies , 2010, 1007.3748.

[27]  R. Klessen,et al.  GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS , 2010, 1006.1508.

[28]  H. Trac,et al.  Computer Simulations of Cosmic Reionization , 2009, 0906.4348.

[29]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[30]  A. Sternberg,et al.  Molecular Clouds at the Reionization Epoch , 2011 .

[31]  Wu Chen,et al.  Analytical solution of a satellite orbit disturbed by atmospheric drag , 2011 .

[32]  C. Hirata,et al.  Suppression and spatial variation of early galaxies and minihaloes , 2010, 1012.2574.

[33]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[34]  A. Loeb,et al.  Cosmology: Hydrogen was not ionized abruptly , 2010, Nature.

[35]  L. Koopmans,et al.  The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies , 2010, 1011.4006.

[36]  A. Ferrara,et al.  Reionization constraints using principal component analysis , 2010, 1011.2213.

[37]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[38]  U. Seljak,et al.  Large-scale BAO signatures of the smallest galaxies , 2010, 1009.4704.

[39]  W. Brandt,et al.  A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES , 2010, 1009.3943.

[40]  Xuelei Chen,et al.  The earliest galaxies seen in 21 cm line absorption , 2010, 1009.1149.

[41]  R. Cen,et al.  Probing the first galaxies with the SKA , 2010, 1009.0950.

[42]  Eli Visbal,et al.  Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.

[43]  K. Lee,et al.  THRESHOLD PROBABILITY FUNCTIONS AND THERMAL INHOMOGENEITIES IN THE Lyα FOREST , 2010, 1007.3734.

[44]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[45]  U. Pen,et al.  ENHANCED DETECTABILITY OF PRE-REIONIZATION 21 cm STRUCTURE , 2010, 1007.0001.

[46]  G. Holder,et al.  The 21 cm signature of cosmic string wakes , 2010, 1006.2514.

[47]  Martina M. Friedrich,et al.  Topology and Sizes of HII Regions during Cosmic Reionization , 2010, 1006.2016.

[48]  Abraham Loeb,et al.  Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal , 2010, 1005.4057.

[49]  Christopher Hirata,et al.  Relative velocity of dark matter and baryonic fluids and the formation of the first structures , 2010, 1005.2416.

[50]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[51]  H. Trac,et al.  Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models , 2010, 1003.3455.

[52]  Y. Revaz,et al.  Reionization by UV or X-ray sources , 2010, 1003.0834.

[53]  P. Noterdaeme,et al.  Detection of 21-cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152* , 2010, 1002.4620.

[54]  F. Kitaura,et al.  Searching for the earliest galaxies in the 21 cm forest , 2010, 1002.4356.

[55]  B. Ciardi,et al.  Lyα versus X-ray heating in the high-z intergalactic medium , 2010 .

[56]  P. Brax,et al.  Brane bremsstrahlung in DBI inflation , 2009, 0912.0806.

[57]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[58]  S. Furlanetto,et al.  Secondary ionization and heating by fast electrons , 2009, 0910.4410.

[59]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[60]  J. Silk,et al.  Signatures of clumpy dark matter in the global 21 cm background signal , 2008, 0808.0881.

[61]  P. Noterdaeme,et al.  Detection of 21-cm, H 2 and deuterium absorption at z > 3 along the line of sight to J1337 + 3152 (cid:2) , 2010 .

[62]  U. Irvine,et al.  Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs , 2009, 0911.2219.

[63]  A. Loeb,et al.  Constraining reionization using 21-cm observations in combination with CMB and Lyα forest data , 2009, 0908.3891.

[64]  J. Pritchard,et al.  Forecasted 21 cm constraints on compensated isocurvature perturbations , 2009, 0907.5400.

[65]  S. Rawlings,et al.  A HEURISTIC PREDICTION OF THE COSMIC EVOLUTION OF THE CO-LUMINOSITY FUNCTIONS , 2009, 0907.3091.

[66]  J. Bolton,et al.  Resolving the high redshift Lyα forest in smoothed particle hydrodynamics simulations , 2009, 0906.2861.

[67]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[68]  E. Switzer,et al.  Redshifted intergalactic He+3 8.7 GHz hyperfine absorption , 2009, 0905.1715.

[69]  A. Loeb,et al.  The hyperfine transition of 3 He II as a probe of the intergalactic medium , 2009, 0905.1698.

[70]  H. Trac,et al.  THE 21 cm FOREST AS A PROBE OF THE REIONIZATION AND THE TEMPERATURE OF THE INTERGALACTIC MEDIUM , 2009, 0904.4254.

[71]  J. Wyithe,et al.  Modification of the 21-cm power spectrum by quasars during the epoch of reionisation , 2009, 0904.3163.

[72]  D. Hooper,et al.  How dark matter reionized the Universe , 2009, 0904.1210.

[73]  Y. Jing,et al.  Effects of dark sectors' mutual interaction on the growth of structures , 2009, 0902.0660.

[74]  H. Falcke,et al.  Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets , 2009, 0902.0493.

[75]  A. Loeb,et al.  Cosmological constraints from 21cm surveys after reionization , 2008, 0812.0419.

[76]  V. Barger,et al.  Inflationary Potential from 21 cm Tomography and Planck , 2008, 0810.3337.

[77]  L. Warszawski,et al.  Modification of the 21-cm power spectrum by X-rays during the epoch of reionization , 2008, 0809.1954.

[78]  A. Loeb,et al.  The 21-cm power spectrum after reionization , 2008, 0808.2323.

[79]  S. Zaroubi,et al.  Fast Large-Scale Reionization Simulations , 2008, 0809.1326.

[80]  Garching,et al.  Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics , 2008, 0809.2428.

[81]  S. Zaroubi,et al.  Fast Large-Scale Reionization Simulations , 2008, 0809.1326.

[82]  A. Lewis,et al.  Nonlinear redshift-space power spectra , 2008, 0808.1724.

[83]  P. Di Matteo,et al.  The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping , 2008, 0808.0925.

[84]  H. Trac,et al.  Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium , 2008, 0807.4530.

[85]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[86]  N. Padmanabhan,et al.  CMB and 21-cm signals for dark matter with a long-lived excited state , 2008, 0805.3531.

[87]  Carlos Hernandez-Monteagudo,et al.  Carbon monoxide line emission as a CMB foreground: tomography of the star-forming universe with different spectral resolutions , 2008, 0805.2174.

[88]  E. Pierpaoli,et al.  Constraining massive neutrinos using cosmological 21 cm observations , 2008, 0805.1920.

[89]  K. Mack,et al.  Primordial black holes in the Dark Ages: Observational prospects for future 21cm surveys , 2008, 0805.1531.

[90]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[91]  A. Ferrara,et al.  The energy cascade from warm dark matter decays , 2008, 0803.0370.

[92]  A. Loeb,et al.  Evolution of the 21 cm signal throughout cosmic history , 2008, 0802.2102.

[93]  Matias Zaldarriaga,et al.  How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.

[94]  B. Wandelt,et al.  Cosmic (Super)String Constraints from 21 cm Radiation. , 2008, Physical review letters.

[95]  Abraham Loeb,et al.  Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization. , 2008, Physical review letters.

[96]  J. Hewitt,et al.  Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization , 2007, 0710.2541.

[97]  Ue-Li Pen,et al.  Baryon acoustic oscillation intensity mapping of dark energy. , 2007, Physical review letters.

[98]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[99]  A. Loeb,et al.  Fluctuations in 21-cm emission after reionization , 2007, 0708.3392.

[100]  H. Trac,et al.  Cosmic Reionization and the 21 cm Signal: Comparison between an Analytical Model and a Simulation , 2007, 0708.2424.

[101]  Berkeley,et al.  Detecting the Rise and Fall of 21 cm Fluctuations with the Murchison Widefield Array , 2007, 0711.4373.

[102]  Stuart Wyithe,et al.  Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts , 2007, 0709.2955.

[103]  R. Barkana,et al.  Detecting early galaxies through their 21‐cm signature , 2007, 0707.3146.

[104]  F. Combes,et al.  Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations , 2007, 0707.2483.

[105]  Stuart WyitheAvi Loeb The imprint of cosmic reionization on galaxy clustering , 2007, 0706.3744.

[106]  Zheng Zheng,et al.  Radiative Transfer Effect on Ultraviolet Pumping of the 21 cm Line in the High-Redshift Universe , 2007 .

[107]  R. Barkana On correlated random walks and 21-cm fluctuations during cosmic reionization , 2007, 0704.3534.

[108]  S. Furlanetto,et al.  Spin Exchange Rates in Proton-Hydrogen Collisions , 2007, astro-ph/0702487.

[109]  B. Wandelt,et al.  21-cm radiation: a new probe of variation in the fine-structure constant. , 2007, Physical review letters.

[110]  M. Mapelli,et al.  Constraining dark matter through 21-cm observations , 2007, astro-ph/0701301.

[111]  J. Chengalur,et al.  H i 21-cm absorption at z∼ 3.39 towards PKS 0201+113 , 2007, astro-ph/0701074.

[112]  H. Trac,et al.  Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results , 2006, astro-ph/0612406.

[113]  S. Furlanetto,et al.  Spin-exchange rates in electron–hydrogen collisions , 2006, astro-ph/0608067.

[114]  J. Pritchard,et al.  21-cm fluctuations from inhomogeneous X-ray heating before reionization , 2006, astro-ph/0607234.

[115]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[116]  Matias Zaldarriaga,et al.  Simulations and Analytic Calculations of Bubble Growth during Hydrogen Reionization , 2006, astro-ph/0604177.

[117]  Ž. Ivezić,et al.  The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity , 2006, astro-ph/0611453.

[118]  S. Matarrese,et al.  The Bispectrum of Redshifted 21 Centimeter Fluctuations from the Dark Ages , 2006, astro-ph/0611126.

[119]  Max Tegmark,et al.  21 cm Tomography with Foregrounds , 2006 .

[120]  A. Cooray 21-cm background anisotropies can discern primordial non-Gaussianity. , 2006, Physical review letters.

[121]  M. Zaldarriaga,et al.  The morphology of H ii regions during reionization , 2006, astro-ph/0610094.

[122]  S. Zaroubi,et al.  Heating of the intergalactic medium by primordial miniquasars , 2006, astro-ph/0609151.

[123]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[124]  E. Pierpaoli,et al.  Effects of dark matter decay and annihilation on the high-redshift 21 cm background , 2006, astro-ph/0608385.

[125]  S. Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006, astro-ph/0608032.

[126]  S. Furlanetto The 21-cm forest , 2006 .

[127]  Asantha Cooray,et al.  Cosmological and Astrophysical Parameter Measurements with 21-cm Anisotropies During the Era of Reionization , 2006, astro-ph/0605677.

[128]  J. Pritchard,et al.  The scattering of Lyman-series photons in the intergalactic medium , 2006, astro-ph/0605680.

[129]  P. Shapiro,et al.  Recognizing the First Radiation Sources through Their 21 cm Signature , 2006, astro-ph/0605511.

[130]  Xuelei Chen,et al.  The 21 cm Signature of the First Stars , 2006, astro-ph/0605439.

[131]  C. Hirata,et al.  The spin‐resolved atomic velocity distribution and 21‐cm line profile of dark‐age gas , 2006, astro-ph/0605071.

[132]  P. Shapiro,et al.  Heating and Cooling of the Early Intergalactic Medium by Resonance Photons , 2006, astro-ph/0604483.

[133]  J. Pritchard,et al.  Galaxy surveys, inhomogeneous re-ionization and dark energy , 2006, astro-ph/0604358.

[134]  S. Furlanetto,et al.  Redshifted 21 cm Emission from Minihalos before Reionization , 2006, astro-ph/0604080.

[135]  S. Furlanetto The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.

[136]  U. Austin,et al.  Simulating cosmic reionization at large scales – II. The 21-cm emission features and statistical signals , 2006, astro-ph/0603518.

[137]  G. Rybicki Improved Fokker-Planck Equation for Resonance-Line Scattering , 2006, astro-ph/0603047.

[138]  P. Shapiro,et al.  The 21 cm Background from the Cosmic Dark Ages: Minihalos and the Intergalactic Medium before Reionization , 2005, astro-ph/0512516.

[139]  Wayne Hu,et al.  Redshift Space 21 cm Power Spectra from Reionization , 2005, astro-ph/0511141.

[140]  P. Madau,et al.  accepted for publication in The Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE SPIN TEMPERATURE AND 21CM BRIGHTNESS OF THE INTERGALACTIC MEDIUM IN THE PRE-REIONIZATION ERA , 2005 .

[141]  A. Loeb,et al.  Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts , 2005, astro-ph/0509784.

[142]  J. Pritchard,et al.  Descending from on high: Lyman-series cascades and spin-kinetic temperature coupling in the 21-cm line , 2005, astro-ph/0508381.

[143]  C. Hirata Wouthuysen-Field coupling strength and application to high-redshift 21-cm radiation , 2005, astro-ph/0507102.

[144]  S. Furlanetto,et al.  Measuring the primordial deuterium abundance during the cosmic dark ages. , 2005, Physical review letters.

[145]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[146]  P. Madau,et al.  The first miniquasar , 2005, astro-ph/0506712.

[147]  S. Furlanetto,et al.  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[148]  B. Zygelman Hyperfine Level-changing Collisions of Hydrogen Atoms and Tomography of the Dark Age Universe , 2005 .

[149]  R. Barkana,et al.  Growth of Linear Perturbations before the Era of the First Galaxies , 2005, astro-ph/0503196.

[150]  A. Loeb,et al.  Probing the epoch of early baryonic infall through 21-cm fluctuations , 2005, astro-ph/0502083.

[151]  Max Tegmark,et al.  21 cm Tomography with Foregrounds , 2005, astro-ph/0501081.

[152]  A. Nusser The spin temperature of neutral hydrogen during cosmic pre-reionization , 2004, astro-ph/0409640.

[153]  A. Loeb,et al.  A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.

[154]  K. Ioka,et al.  Radio Afterglows of Gamma-Ray Bursts and Hypernovae at High Redshift and Their Potential for 21 Centimeter Absorption Studies , 2004, astro-ph/0408487.

[155]  A. Loeb,et al.  Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations , 2004, astro-ph/0410129.

[156]  S. Bharadwaj,et al.  The cosmic microwave background radiation fluctuations from H i perturbations prior to reionization , 2004 .

[157]  J. Ostriker,et al.  X-ray pre-ionization powered by accretion on the first black holes — II. Cosmological simulations and observational signatures , 2004, astro-ph/0404318.

[158]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[159]  E. Quataert,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 MODELING THE COUNTS OF FAINT RADIO LOUD QUASARS: CONSTRAINTS ON THE SUPERMASSIVE BLACK HOLE POPULATION AND PREDICTIONS FOR HIGH REDSHIFT , 2004 .

[160]  Z. Haiman,et al.  A Limit from the X-Ray Background on the Contribution of Quasars to Reionization , 2004, astro-ph/0403078.

[161]  J. Weller,et al.  Neutral hydrogen surveys for high-redshift galaxy clusters and protoclusters , 2004, astro-ph/0401340.

[162]  S. Bharadwaj,et al.  Centre for Theoretical Studies , 2008 .

[163]  Matias Zaldarriaga,et al.  Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation. , 2003, Physical review letters.

[164]  M. Kamionkowski,et al.  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[165]  A. Loeb,et al.  Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift , 2003, astro-ph/0310338.

[166]  M. Rees,et al.  Early Reionization by Miniquasars , 2003, astro-ph/0310223.

[167]  Xuelei Chen,et al.  The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption , 2003, astro-ph/0303395.

[168]  J. Hewitt,et al.  Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003, astro-ph/0312437.

[169]  A. Loeb,et al.  Large-Scale Structure Shocks at Low and High Redshifts , 2003, astro-ph/0312435.

[170]  J. Ostriker,et al.  X-ray pre-ionization powered by accretion on the first black holes – I. A model for the WMAP polarization measurement , 2003, astro-ph/0311003.

[171]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[172]  Marat Gilfanov,et al.  Lx-SFR relation in star-forming galaxies , 2003 .

[173]  Moscow,et al.  Lx-SFR relation in star-forming galaxies , 2003, astro-ph/0301331.

[174]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[175]  U. T. Austin,et al.  Non‐linear clustering during the cosmic Dark Ages and its effect on the 21‐cm background from minihaloes , 2002, astro-ph/0209216.

[176]  R. Sunyaev,et al.  L X – SFR relation in star forming galaxies , 2003 .

[177]  A. Loeb,et al.  The 21 Centimeter Forest: Radio Absorption Spectra as Probes of Minihalos before Reionization , 2002, astro-ph/0206308.

[178]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[179]  Institute for Astronomy,et al.  Radiative feedback from an early X-ray background , 2002, astro-ph/0205308.

[180]  R. Barkana,et al.  An Analytical Approach to Inhomogeneous Structure Formation , 2002, astro-ph/0205276.

[181]  C. Carilli,et al.  H I 21 Centimeter Absorption beyond the Epoch of Reionization , 2002, astro-ph/0205169.

[182]  P. Shapiro,et al.  On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos , 2002, astro-ph/0202410.

[183]  J. Shull,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .

[184]  H. Liszt Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Spin Temperature of Warm Interstellar H I , 2008 .

[185]  R. Kudritzki,et al.  Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2000, astro-ph/0007248.

[186]  OH S.Peng,et al.  Reionization by Hard Photons. I. X-Rays from the First Star Clusters , 2000, astro-ph/0005262.

[187]  A. Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000, astro-ph/0010468.

[188]  A. Loeb,et al.  Identifying the Reionization Redshift from the Cosmic Star Formation Rate , 2000, astro-ph/0001326.

[189]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[190]  A. Meiksin Detecting the Epoch of First Light in 21-CM Radiation , 2000 .

[191]  D. Sasselov,et al.  A New Calculation of the Recombination Epoch , 1999, astro-ph/9909275.

[192]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[193]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[194]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[195]  M. Rees,et al.  21 Centimeter Tomography of the Intergalactic Medium at High Redshift , 1996, astro-ph/9608010.

[196]  G. Ferland,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996, astro-ph/9601009.

[197]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[198]  J. Shull,et al.  X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .

[199]  N. Bochkarev,et al.  Atomic Data in Astrophysics , 1984 .

[200]  J. Shull Heating and ionization by X-ray photoelectrons , 1979 .

[201]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[202]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[203]  A. C. Allison,et al.  SPIN CHANGE IN COLLISIONS OF HYDROGEN ATOMS. , 1969 .

[204]  D. Kleppner The Atomic Hydrogen Maser , 1960 .

[205]  G. Field The Time Relaxation of a Resonance-Line Profile. , 1959 .

[206]  G. Field An Attempt to Observe Neutral Hydrogen Between the Galaxies. , 1959 .

[207]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.

[208]  V. Sobolev The Diffusion of Lα Radiation in Nebulae and Stellar Envelopes. , 1957 .

[209]  S. A. Wouthuysen On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. , 1952 .

[210]  E. Purcell,et al.  Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec. , 1951, Nature.