On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index

[1]  Raghubar D. Sharma,et al.  Elements of Statistics. , 1925, Nature.

[2]  Elmer B. Mode,et al.  Elements of Statistics , 1942, Agronomy Journal.

[3]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[4]  V. Zwet Convex transformations of random variables , 1965 .

[5]  M. M. Siddiqui,et al.  Robust Estimation of Location , 1967 .

[6]  S. Claus,et al.  Zwet, w. r. van: convex transformations of random variables. mathematica centre tracts 7. mathematisch centrum amsterdam, 1964, 116 seiten , 1968 .

[7]  R. Hogg More Light on the Kurtosis and Related Statistics , 1972 .

[8]  R. Hogg Adaptive Robust Procedures: A Partial Review and Some Suggestions for Future Applications and Theory , 1974 .

[9]  David V. Hinkley,et al.  On power transformations to symmetry , 1975 .

[10]  B. Everitt,et al.  Finite Mixture Distributions , 1981 .

[11]  Richard A. Groeneveld,et al.  Measuring Skewness and Kurtosis , 1984 .

[12]  J. Moors,et al.  A quantile alternative for kurtosis , 1988 .

[13]  Philippe Jorion On Jump Processes in the Foreign Exchange and Stock Markets , 1988 .

[14]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[15]  Stephen E. Satchell,et al.  Modelling emerging market risk premia using higher moments , 1999 .

[16]  Campbell R. Harvey,et al.  Current Version : April 6 , 1999 Autoregressive Conditional Skewness , 1999 .

[17]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[18]  Allan Timmermann,et al.  Moments of Markov switching models , 2000 .

[19]  Allan Timmermann,et al.  Business Cycle Asymmetries in Stock Returns: Evidence from Higher Order Moments and Conditional Densities , 2001, SSRN Electronic Journal.