In situ artificial wide-bandgap Cs-based recrystallized-arrays for optical optimization of perovskite solar cells

[1]  T. Shin,et al.  Controlled growth of perovskite layers with volatile alkylammonium chlorides , 2023, Nature.

[2]  Zhike Liu,et al.  24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex , 2023, Advanced Functional Materials.

[3]  Michael Saliba,et al.  Pure Tin Halide Perovskite Solar Cells: Focusing on Preparation and Strategies , 2022, Advanced Energy Materials.

[4]  Dou-Dou Wang,et al.  Honeycomb-type TiO2 films toward a high tolerance to optical paths for perovskite solar cells. , 2022, ChemSusChem.

[5]  Hong Liu,et al.  A Tunable Electrochemical Strategy toward an All-Inorganic CsPbBr3 Perovskite , 2022, ACS Applied Energy Materials.

[6]  Oskar J. Sandberg,et al.  Single‐Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electron‐Diffusion Length , 2022, Advanced materials.

[7]  Lin Mao,et al.  Fully Textured, Production‐Line Compatible Monolithic Perovskite/Silicon Tandem Solar Cells Approaching 29% Efficiency , 2022, Advanced materials.

[8]  Chao Gao,et al.  Photovoltaic performance of bifacial perovskite/c-Si tandem solar cells , 2022, Journal of Power Sources.

[9]  F. Gao,et al.  Decoupling engineering of formamidinium–cesium perovskites for efficient photovoltaics , 2022, National Science Review.

[10]  Thomas G. Allen,et al.  Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx , 2022, Science.

[11]  Thomas G. Allen,et al.  Monolithic Perovskite/Silicon Tandem Photovoltaics with Minimized Cell-to-Module Losses by Refractive-Index Engineering , 2022, ACS Energy Letters.

[12]  Hairui Liu,et al.  Improvements in Efficiency and Stability of Perovskite Solar Cells Using a Cesium Chloride Additive. , 2022, ACS applied materials & interfaces.

[13]  E. Drouard,et al.  Light Management in Perovskite Photovoltaic Solar Cells: A Perspective , 2022, Advanced Energy Materials.

[14]  Yiming Li,et al.  Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation , 2022, Joule.

[15]  Xiaodang Zhang,et al.  Wide Bandgap Interface Layer Induced Stabilized Perovskite/Silicon Tandem Solar Cells with Stability over Ten Thousand Hours , 2021, Advanced Energy Materials.

[16]  W. Shen,et al.  Low‐Cost Strategy for High‐Efficiency Bifacial Perovskite/c‐Si Tandem Solar Cells , 2021, Solar RRL.

[17]  A. M. Saleque,et al.  Improved Nanophotonic Front Contact Design for High‐Performance Perovskite Single‐Junction and Perovskite/Perovskite Tandem Solar Cells , 2021, Solar RRL.

[18]  P. Lin,et al.  Pseudo‐Halide Perovskite Solar Cells , 2021, Advanced Energy Materials.

[19]  M. Bonn,et al.  Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells , 2021 .

[20]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[21]  J. Bao,et al.  Reversible Transformation between CsPbBr3 Perovskite Nanowires and Nanorods with Polarized Optoelectronic Properties , 2021, Advanced Functional Materials.

[22]  Yanlin Song,et al.  Colorful Efficient Moiré‐Perovskite Solar Cells , 2021, Advanced materials.

[23]  Jianhua Xu,et al.  Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency , 2021 .

[24]  M. Kanatzidis,et al.  Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits , 2021, Science Advances.

[25]  Jing Zhang,et al.  Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure. , 2020, ACS applied materials & interfaces.

[26]  W. Shen,et al.  Ambient Manipulation of Perovskites by Alternating Electric Field toward Tunable Photovoltaic Performance , 2020, Advanced Functional Materials.

[27]  Hui Li,et al.  Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. , 2020, Chemical reviews.

[28]  S. Burger,et al.  Improved Quantum Efficiency by Advanced Light Management in Nanotextured Solution-Processed Perovskite Solar Cells , 2020 .

[29]  Chen Zhao,et al.  Ultrathin Perovskite Monocrystals Boost the Solar Cell Performance , 2020, Advanced Energy Materials.

[30]  X. Tao,et al.  Designing Large-Area Single-Crystal Perovskite Solar Cells , 2020 .

[31]  M. Yuan,et al.  Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape , 2020, Nature Communications.

[32]  Yuanhui Sun,et al.  Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction , 2020 .

[33]  Zhuoying Chen,et al.  TiO2 nanocolumn arrays for more efficient and stable perovskite solar cells. , 2020, ACS applied materials & interfaces.

[34]  A. Lasagni,et al.  Toward High‐Throughput Texturing of Polymer Foils for Enhanced Light Trapping in Flexible Perovskite Solar Cells Using Roll‐to‐Roll Hot Embossing , 2020, Advanced Engineering Materials.

[35]  Yang Yang,et al.  Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics , 2019, Science.

[36]  Guangdong Zhou,et al.  Coordinated Optical Matching of a Texture Interface Made from Demixing Blended Polymers for High Performance Inverted Perovskite Solar Cells. , 2019, ACS nano.

[37]  X. Tao,et al.  Single Crystal Perovskite Solar Cells: Development and Perspectives , 2019, Advanced Functional Materials.

[38]  Zhaolai Chen,et al.  Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency , 2019, ACS Energy Letters.

[39]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[40]  Z. Yin,et al.  Surface passivation of perovskite film for efficient solar cells , 2019, Nature Photonics.

[41]  K. Ho,et al.  Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells , 2019, Nano Energy.

[42]  Liang Li,et al.  Nanoimprinted Grating‐Embedded Perovskite Solar Cells with Improved Light Management , 2019, Advanced Functional Materials.

[43]  Jin Young Kim,et al.  Pseudohalides in Lead‐Based Perovskite Semiconductors , 2019, Advanced materials.

[44]  S. Bals,et al.  Chemical Cutting of Perovskite Nanowires into Single-Photon Emissive Low-Aspect-Ratio CsPbX3 (X=Cl, Br, I) Nanorods. , 2018, Angewandte Chemie.

[45]  G. Gigli,et al.  Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells , 2018, Nano Energy.

[46]  Yanlin Song,et al.  High efficient perovskite whispering-gallery solar cells , 2018, Nano Energy.

[47]  L. Wan,et al.  Polar Solvent Induced Lattice Distortion of Cubic CsPbI3 Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. , 2018, Journal of the American Chemical Society.

[48]  W. Shen,et al.  Perovskite/c‐Si tandem solar cells with realistic inverted architecture: Achieving high efficiency by optical optimization , 2018, Progress in Photovoltaics: Research and Applications.

[49]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[50]  Yanlin Song,et al.  Diffraction‐Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping , 2018 .

[51]  Dong Hyun Kim,et al.  Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer. , 2018, ACS applied materials & interfaces.

[52]  Jinsong Huang,et al.  Thin single crystal perovskite solar cells to harvest below-bandgap light absorption , 2017, Nature Communications.

[53]  Zhengshan J. Yu,et al.  Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer , 2017 .

[54]  S. Bals,et al.  From Precursor Powders to CsPbX3 Perovskite Nanowires: One-Pot Synthesis, Growth Mechanism, and Oriented Self-Assembly. , 2017, Angewandte Chemie.

[55]  Jay B. Patel,et al.  Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics , 2017 .

[56]  Wenjun Zhang,et al.  Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode , 2017 .

[57]  Jingshan Luo,et al.  Enhanced light absorption of thin perovskite solar cells using textured substrates , 2017 .

[58]  Rachel C. Kurchin,et al.  High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells. , 2017, ACS nano.

[59]  B. Rech,et al.  Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells , 2017 .

[60]  Bin Su,et al.  Crystallographically Aligned Perovskite Structures for High‐Performance Polarization‐Sensitive Photodetectors , 2017, Advanced materials.

[61]  S. Yokojima,et al.  Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures. , 2016, Journal of the American Chemical Society.

[62]  Yan Yao,et al.  Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. , 2015, ACS nano.

[63]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[64]  Minkyu Choi,et al.  Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications , 2015 .

[65]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[66]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[67]  P. Jain,et al.  Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. , 2009, Journal of the American Chemical Society.

[68]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[69]  P. Jain,et al.  Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. , 2008, Journal of the American Chemical Society.

[70]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[71]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[72]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .