Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach.

First, a Q-S (lag or anticipated) synchronization of continuous-time dynamical systems is defined. Second, based on a backstepping design with one controller, a systematic, concrete, and automatic scheme is developed to investigate the Q-S (lag or anticipated) synchronization between the drive system and response system with a strict-feedback form. Two identical hyperchaotic Tamasevicius-Namajunas-Cenys(TNC) systems as well as the hyperchaotic TNC system and hyperchaotic Rossler system are chosen to illustrate the proposed scheme. Numerical simulations are used to verify the effectiveness of the proposed scheme. The scheme can also be extended to study Q-S (lag or anticipated) synchronization between other dynamical systems with strict-feedback forms. With the aid of symbolic-numeric computation, the scheme can be performed to yield automatically the scalar controller in computer.

[1]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Julien Clinton Sprott,et al.  Elementary chaotic flow , 1999 .

[3]  E. M. Shahverdiev,et al.  Lag synchronization in time-delayed systems , 2002 .

[4]  S Boccaletti,et al.  Unifying framework for synchronization of coupled dynamical systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Yuan-Zhao Yin SYNCHRONIZATION OF CHAOS IN A MODIFIED CHUA’S CIRCUIT USING CONTINUOUS CONTROL , 1996 .

[6]  Zhenya Yan,et al.  A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems. , 2005, Chaos.

[7]  QIAN SHU LI,et al.  A Chemical Model for Chua's equation , 2002, Int. J. Bifurc. Chaos.

[8]  S. Mascolo,et al.  Synchronisation of hyperchaotic oscillators using a scalar signal , 1998 .

[9]  Shuzhi Sam Ge,et al.  Adaptive backstepping Control of uncertain Lorenz System , 2001, Int. J. Bifurc. Chaos.

[10]  Zhenya Yan,et al.  Chaos Q–S synchronization between Rössler system and the new unified chaotic system , 2005 .

[11]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[12]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[13]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[14]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Shihua Chen,et al.  Synchronizing strict-feedback chaotic system via a scalar driving signal. , 2004, Chaos.

[16]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[17]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[18]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[19]  O. Rössler An equation for hyperchaos , 1979 .

[20]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[21]  L. Chua,et al.  The double scroll family , 1986 .

[22]  Jiang-Wen Xiao,et al.  Impulsive control for synchronization of a class of continuous systems. , 2004, Chaos.

[23]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[24]  Xiao-Song Yang,et al.  A framework for synchronization theory , 2000 .

[25]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[26]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[27]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[28]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[29]  Ljupco Kocarev,et al.  A unifying definition of synchronization for dynamical systems. , 1998, Chaos.

[30]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[31]  A. Tamasevicius,et al.  Simple 4D chaotic oscillator , 1996 .