Simultaneous Estimation of the Parameters of the Extreme Value Distribution by Sample Quantiles

This paper considers the estimation of the parameters of the extreme value distribution. Best linear unbiased estimators based on k = 2(l)10 sample quantiles are used. The optimum spacings, the coelficients of the estimators, their variances and asymptotic efficiencies are given. Estimation of the parameters from censored samples is also considered.

[1]  K. M. Hassanein,et al.  Estimation of the parameters of the extreme value distribution by use of two or three order statistics , 1969 .

[2]  Bradford F. Kimball,et al.  Sufficient Statistical Estimation Functions for the Parameters of the Distribution of Maximum Values , 1946 .

[3]  Harry Press,et al.  The application of the statistical theory of extreme values to gust-load problems , 1949 .

[4]  Julius Lieblein,et al.  On the Exact Evaluation of the Variances and Covariances of Order Statistics in Samples from the Extreme-Value Distribution , 1953 .

[5]  小川 潤次郎 Contributions to the theory of systematic statistics , 1954 .

[6]  F. Mosteller On Some Useful "Inefficient" Statistics , 1946 .

[7]  K. M. Hassanein,et al.  Analysis of Extreme-Value Data by Sample Quantiles for Very Large Samples , 1968 .

[8]  K. M. Hassanein,et al.  Estimation of the parameters of the logistic distribution by sample quantiles , 1969 .

[9]  Albert H. Moore,et al.  Maximum-Likelihood Estimation, from Doubly Censored Samples, of the Parameters of the First Asymptotic Distribution of Extreme Values , 1968 .

[10]  B. F. Kimball An Approximation to the Sampling Variance of an Estimated Maximum Value of Given Frequency Based on Fit of Doubly Exponential Distribution of Maximum Values , 1949 .

[11]  Junjiro Ogawa,et al.  Contributions to the theory of systematic statistics. II. Large sample theoretical treatments of some problems arising from dosage and time mortality curve , 1951 .

[12]  Julius Lieblein,et al.  A new method of analyzing extreme-value data , 1952 .