Damage and rheology in a fibre‐bundle model

SUMMARY In this paper, we consider the continuum deformation of the brittle upper continental lithosphere, utilizing the fibre-bundle model. Fibre failure is assumed to be a thermally activated process. We further assume that a failed fibre is replaced by a new unstressed fibre. This replacement is analogous to a migration of a dislocation, an earthquake rupture or a microcrack. We derive a non-Newtonian power-law viscous rheology. This is the rheology that has been used to explain the lithospheric deformation in Tibet. We also constrain the parameters in our model using aftershocks. A major advantage of our upper continental rheology is that it has a strong temperature dependence. We then use this model to define the strength envelope of the continental lithosphere. Our results suggest that a damage model is appropriate for the continuum rheology of the upper continental lithosphere.

[1]  D. Turcotte,et al.  Micro and macroscopic models of rock fracture , 2003 .

[2]  Y. Ben-Zion,et al.  Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults , 2002 .

[3]  W. I. Newman,et al.  Time-dependent fiber bundles with local load sharing. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Peter Schwartz,et al.  Temperature dependence of lifetime statistics for single Kevlar 49 filaments in creep-rupture , 1988 .

[5]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[6]  M. Polanyi,et al.  Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte , 1934 .

[7]  M. Ashby,et al.  Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  D. Bercovici,et al.  Two-phase damage theory and crustal rock failure: the theoretical ‘void’ limit, and the prediction of experimental data , 2003 .

[9]  M. Nakatani Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology , 2001 .

[10]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[11]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[12]  D. Turcotte,et al.  Thorium-uranium systematics require layered mantle convection , 2001 .

[13]  M. McNutt Lithospheric flexure and thermal anomalies , 1984 .

[14]  E. Orowan Zur Kristallplastizität. I , 1934 .

[15]  H. Daniels The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Peter Molnar,et al.  Active deformation of Asia : From kinematics to dynamics , 1997 .

[17]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[18]  D. Turcotte,et al.  A damage model for the continuum rheology of the upper continental crust , 2004 .

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  Alessandro Vespignani,et al.  Plasticity and avalanche behaviour in microfracturing phenomena , 1997, Nature.

[21]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[22]  P. England,et al.  A thin viscous sheet model for continental deformation , 1982 .

[23]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[24]  P. Reasenberg,et al.  Earthquake Hazard After a Mainshock in California , 1989, Science.

[25]  J. M. Roberts,et al.  Effect of hydrogen on the temperature dependence of the elastic constants of tantalum single crystals , 1980 .

[26]  A Damage Mechanics Model for Aftershocks , 2004 .

[27]  Y. Ben‐Zion,et al.  Distributed damage, faulting, and friction , 1997 .

[28]  B. Atkinson Subcritical crack growth in geological materials , 1984 .

[29]  David Bercovici,et al.  Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation , 2003 .

[30]  Kunihiko Shimazaki,et al.  Scaling Relationship between the Number of Aftershocks and the Size of the Main Shock , 1990 .

[31]  A model for complex aftershock sequences , 2000, cond-mat/0012058.

[32]  Stefano Zapperi,et al.  Damage in fiber bundle models , 2000 .

[33]  E. M. Anderson,et al.  The dynamics of faulting : and dyke formation with applications to Britain , 1953, Geological Magazine.

[34]  R. J. Charles,et al.  Static Fatigue of Glass. II , 1958 .

[35]  P. England,et al.  Finite strain calculations of continental deformation: 1. Method and general results for convergent zones , 1986 .

[36]  S. L. Phoenix,et al.  Asymptotic Distributions for the Failure of Fibrous Materials Under Series-Parallel Structure and Equal Load-Sharing , 1981 .

[37]  Donald L. Turcotte,et al.  Damage and self-similarity in fracture , 2003 .

[38]  Philip England,et al.  FINITE STRAIN CALCULATIONS OF CONTINENTAL DEFORMATION .2. COMPARISON WITH THE INDIA-ASIA COLLISION ZONE , 1986 .

[39]  W. F. Brace,et al.  Limits on lithospheric stress imposed by laboratory experiments , 1980 .

[40]  S. Kirby,et al.  Rheology of the lithosphere: Selected topics , 1987 .

[41]  F. Omori,et al.  On the after-shocks of earthquakes , 1894 .

[42]  S. Taylor,et al.  Heat Flow and the Chemical Composition of Continental Crust , 1996, The Journal of Geology.

[43]  Bernard D. Coleman,et al.  Time Dependence of Mechanical Breakdown Phenomena , 1956 .

[44]  Bernard D. Coleman,et al.  Statistics and Time Dependence of Mechanical Breakdown in Fibers , 1958 .