Gradients and thresholds: BMP response gradients unveiled in Drosophila embryos.

Bone morphogenetic proteins (BMP) direct dorsal-ventral patterning in both invertebrate and vertebrate embryos, with strong evolutionary conservation of molecular components of the pathway. Dorsal-ventral patterning of the early Drosophila embryo is a powerful experimental system to probe mechanisms of BMP gradient formation and interpretation. Recent studies have found that spatial patterns of activated BMP signal transducers in Drosophila go through an unexpected transition: a shallow gradient of weak responses at mid-cellularization changes to a step gradient of stronger responses in cellularized embryos. The transition between two gradients of different shape yields new insights into the progression of Drosophila dorsal-ventral patterning and raises new issues about the mechanisms of gradient formation.

[1]  Xia Lin,et al.  dSmurf Selectively Degrades Decapentaplegic-activated MAD, and Its Overexpression Disrupts Imaginal Disc Development* , 2003, Journal of Biological Chemistry.

[2]  K. Anderson,et al.  Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. , 1995, Annual review of genetics.

[3]  H. Meinhardt,et al.  Developmental biology: Sharp peaks from shallow sources , 2002, Nature.

[4]  C. Hill,et al.  Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. , 2002, Molecular cell.

[5]  Michael Levine,et al.  Local inhibition and long-range enhancement of Dpp signal transduction by Sog , 1999, Nature.

[6]  A. Teleman,et al.  Dpp Gradient Formation in the Drosophila Wing Imaginal Disc , 2000, Cell.

[7]  Mingfa Li,et al.  Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo , 2003, Development.

[8]  E. L. Ferguson,et al.  Morphogen gradients: new insights from DPP. , 1999, Trends in genetics : TIG.

[9]  R. Mann,et al.  Synergistic activation of a Drosophila enhancer by HOM/EXD and DPP signaling , 1997, The EMBO journal.

[10]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[11]  R. Dorfman,et al.  Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. , 2001, Development.

[12]  J. Gurdon,et al.  Morphogen gradient interpretation , 2001, Nature.

[13]  T. Tabata,et al.  Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. , 2000, Molecular cell.

[14]  J. Massagué,et al.  The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. , 1997, Genes & development.

[15]  R. Harland Developmental biology: A twist on embryonic signalling , 2001, Nature.

[16]  E. L. Ferguson,et al.  A positive role for Short gastrulation in modulating BMP signaling during dorsoventral patterning in the Drosophila embryo. , 2001, Development.

[17]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[18]  R. Barrio,et al.  The role of TGF beta signaling in the formation of the dorsal nervous system is conserved between Drosophila and chordates. , 2002, Development.

[19]  S. Roth,et al.  The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. , 1999, Development.

[20]  E. Bier,et al.  Creation of a Sog morphogen gradient in the Drosophila embryo. , 2002, Developmental cell.

[21]  J. D. Engel,et al.  A GATA family transcription factor is expressed along the embryonic dorsoventral axis in Drosophila melanogaster. , 1993, Development.

[22]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[23]  M. Affolter,et al.  Nuclear interpretation of Dpp signaling in Drosophila , 2001, The EMBO journal.

[24]  E. Wieschaus,et al.  The Drosophila Gene brinker Reveals a Novel Mechanism of Dpp Target Gene Regulation , 1999, Cell.

[25]  E L Ferguson,et al.  The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. , 2001, Developmental cell.

[26]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[27]  Marcos González-Gaitán,et al.  Gradient Formation of the TGF-β Homolog Dpp , 2000, Cell.

[28]  M. Levine,et al.  Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. , 2000, Development.

[29]  T. Matsuo,et al.  Dally regulates Dpp morphogen gradient formation in the Drosophila wing , 2003, Development.

[30]  M. Frasch,et al.  The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp , 2003, Development.

[31]  L H Frank,et al.  A group of genes required for maintenance of the amnioserosa tissue in Drosophila. , 1996, Development.

[32]  J. Gurdon,et al.  A changing morphogen gradient is interpreted by continuous transduction flow. , 2002, Development.

[33]  L. Raftery,et al.  TGF-beta family signal transduction in Drosophila development: from Mad to Smads. , 1999, Developmental biology.

[34]  J. Doré,et al.  Internalization-Dependent and -Independent Requirements for Transforming Growth Factor β Receptor Signaling via the Smad Pathway , 2002, Molecular and Cellular Biology.

[35]  R. Ray,et al.  Twisted Perspective New Insights into Extracellular Modulation of BMP Signaling during Development , 2001, Cell.

[36]  J. Wrana,et al.  The Xenopus Dorsalizing Factor noggin Ventralizes Drosophila Embryos by Preventing DPP from Activating Its Receptor , 1996, Cell.

[37]  M. Levine,et al.  Role of the zerknüllt gene in dorsal-ventral pattern formation in Drosophila. , 1990, Advances in genetics.

[38]  Michael Levine,et al.  Dorsal gradient networks in the Drosophila embryo. , 2002, Developmental biology.

[39]  W. Gelbart,et al.  An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. , 1993, Development.

[40]  T. Kornberg,et al.  Cytonemes Cellular Processes that Project to the Principal Signaling Center in Drosophila Imaginal Discs , 1999, Cell.

[41]  C. Rushlow,et al.  Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. , 2001, Genes & development.

[42]  K. Anderson,et al.  decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo , 1992, Cell.

[43]  Jeffrey L. Wrana,et al.  Distinct endocytic pathways regulate TGF-β receptor signalling and turnover , 2003, Nature Cell Biology.

[44]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[45]  W. Gelbart,et al.  Decapentaplegic transcripts are localized along the dorsal‐ventral axis of the Drosophila embryo. , 1987, The EMBO journal.

[46]  J. Wrana,et al.  The Drosophila activin receptor baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. , 1999, Genes & development.

[47]  D. J. Olson,et al.  Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. , 2000, Development.

[48]  N. Perrimon,et al.  Investigation of leading edge formation at the interface of amnioserosa and dorsal ectoderm in the Drosophila embryo. , 2001, Development.

[49]  R. Ray,et al.  Intercellular signaling and the polarization of body axes during Drosophila oogenesis. , 1996, Genes & development.

[50]  O. Shimmi,et al.  Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo , 2003, Development.

[51]  P. D. Jackson,et al.  Embryonic expression patterns of the drosophila decapentaplegic gene: Separate regulatory elements control blastoderm expression and lateral ectodermal expression , 1994, Developmental dynamics : an official publication of the American Association of Anatomists.

[52]  C. Nüsslein-Volhard,et al.  Altered mitotic domains reveal fate map changes in Drosophila embryos mutant for zygotic dorsoventral patterning genes. , 1992, Development.

[53]  B. Biehs,et al.  The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. , 1996, Genes & development.

[54]  R. Beauchamp,et al.  Oncogenic Ras Represses Transforming Growth Factor-β/Smad Signaling by Degrading Tumor Suppressor Smad4* , 2001, The Journal of Biological Chemistry.

[55]  Jonathan M.W. Slack,et al.  From egg to embryo : regional specification in early development , 1991 .

[56]  Prof. Dr. José A. Campos-Ortega,et al.  The Embryonic Development of Drosophila melanogaster , 1997, Springer Berlin Heidelberg.

[57]  Peter A. Lawrence,et al.  Morphogens: how big is the big picture? , 2001, Nature Cell Biology.

[58]  Qing Nie,et al.  Do morphogen gradients arise by diffusion? , 2002, Developmental cell.

[59]  M. Frasch,et al.  Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. , 1998, Genes & development.

[60]  P. Lawrence,et al.  Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. , 2000, Development.

[61]  M. Levine,et al.  The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. , 1994, Genes & development.

[62]  C. Heldin,et al.  The L45 loop in type I receptors for TGF‐β family members is a critical determinant in specifying Smad isoform activation , 1998, FEBS letters.