Learning to recognize objects using waves of spikes and Spike Timing-Dependent Plasticity

This paper focuses on feedforward spiking neuron models of the visual cortex. Essentially, we show that a combination of a temporal coding scheme where the most strongly activated neurons fire first with Spike Timing-Dependent Plasticity leads to a situation where neurons will gradually become selective to visual patterns that are both salient, and consistently present in the inputs. At the same time, their responses become more and more rapid. These responses can then be used very effectively to perform object recognition in natural images.

[1]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[2]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[3]  Jacques Gautrais,et al.  Rank order coding , 1998 .

[4]  Edmund T. Rolls,et al.  Position invariant recognition in the visual system with cluttered environments , 2000, Neural Networks.

[5]  G. Kreiman,et al.  Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex , 2009, Neuron.

[6]  Rufin van Rullen,et al.  Neurons Tune to the Earliest Spikes Through STDP , 2005, Neural Computation.

[7]  Pierre Kornprobst,et al.  Virtual Retina: A biological retina model and simulator, with contrast gain control , 2009, Journal of Computational Neuroscience.

[8]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[10]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[11]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Pierre Kornprobst,et al.  Action Recognition Using a Bio-Inspired Feedforward Spiking Network , 2009, International Journal of Computer Vision.

[13]  S. Thorpe,et al.  Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains , 2008, PloS one.

[14]  Thomas Serre,et al.  Learning complex cell invariance from natural videos: A plausibility proof , 2007 .

[15]  Massimo A. Sivilotti,et al.  Wiring considerations in analog VLSI systems, with application to field-programmable networks , 1992 .

[16]  Heiko Neumann,et al.  Unsupervised Learning of Head Pose through Spike-Timing Dependent Plasticity , 2008, PIT.

[17]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[19]  P. Girard,et al.  Ultra-rapid categorisation in non-human primates , 2008, Animal Cognition.

[20]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[21]  Timothée Masquelier,et al.  Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity , 2007, PLoS Comput. Biol..

[22]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[23]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[24]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[26]  David B. Grayden,et al.  Spike-Timing-Dependent Plasticity: The Relationship to Rate-Based Learning for Models with Weight Dynamics Determined by a Stable Fixed Point , 2004, Neural Computation.

[27]  Antonio Torralba,et al.  Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes , 2003, NIPS.

[28]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[29]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[30]  S. Thorpe,et al.  Taking the MAX from neuronal responses , 2003, Trends in Cognitive Sciences.

[31]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[32]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[33]  Adam Kepecs,et al.  Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making , 2006, Nature Reviews Neuroscience.

[34]  Timothée Masquelier,et al.  Competitive STDP-Based Spike Pattern Learning , 2009, Neural Computation.

[35]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[36]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[37]  Geoffrey E. Hinton,et al.  Unsupervised learning : foundations of neural computation , 1999 .

[38]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[39]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  Tobi Delbrück,et al.  CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking , 2009, IEEE Transactions on Neural Networks.

[41]  M. Lewicki,et al.  Learning higher-order structures in natural images , 2003, Network.

[42]  S. Thorpe,et al.  The time course of visual processing: Backward masking and natural scene categorisation , 2005, Vision Research.

[43]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[44]  R Van Rullen,et al.  Face processing using one spike per neurone. , 1998, Bio Systems.

[45]  Marc'Aurelio Ranzato,et al.  Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. , 2002, Journal of neurophysiology.

[47]  Alan L. Yuille,et al.  A Winner-Take-All Mechanism Based on Presynaptic Inhibition Feedback , 1989, Neural Computation.

[48]  Bernabé Linares-Barranco,et al.  Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses , 2009 .

[49]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[50]  Gustavo Deco,et al.  Oscillations, Phase-of-Firing Coding, and Spike Timing-Dependent Plasticity: An Efficient Learning Scheme , 2009, The Journal of Neuroscience.

[51]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[52]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[53]  Oster,et al.  Competition and Cooperation in Neural Nets , 2022 .

[54]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[55]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[56]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[57]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[58]  Rudy Guyonneau Codage par latence et STDP : des stratégies temporelles pour expliquer le traitement visuel rapide , 2006 .

[59]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[60]  Arnaud Delorme,et al.  Networks of integrate-and-fire neurons using Rank Order Coding B: Spike timing dependent plasticity and emergence of orientation selectivity , 2001, Neurocomputing.

[61]  Martin A. Giese,et al.  Biophysiologically Plausible Implementations of the Maximum Operation , 2002, Neural Computation.

[62]  Richard Granger,et al.  A cortical model of winner-take-all competition via lateral inhibition , 1992, Neural Networks.

[63]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[64]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[65]  Tomaso A. Poggio,et al.  Biophysical Models of Neural Computation: Max and Tuning Circuits , 2006, WImBI.

[66]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[67]  Andreas G. Andreou,et al.  Asynchronous Communication of 2D Motion Information Using Winner-Takes-All Arbitration , 1997 .

[68]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[69]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[70]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[71]  S. Grossberg,et al.  Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks , 1975, Biological Cybernetics.

[72]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[73]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[74]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[75]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[76]  Rufin VanRullen,et al.  Temporal codes and sparse representations: A key to understanding rapid processing in the visual system , 2004, Journal of Physiology-Paris.

[77]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .

[78]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[79]  A. Hyvärinen,et al.  A multi-layer sparse coding network learns contour coding from natural images , 2002, Vision Research.

[80]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.