A complete genus-level phylogeny reveals the Cretaceous biogeographic diversification of the poppy family.

[1]  Matthew A. Gitzendanner,et al.  Plastid phylogenomic insights into relationships of all flowering plant families , 2021, BMC Biology.

[2]  M. Benton,et al.  The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. , 2021, The New phytologist.

[3]  D. Quandt,et al.  The evolution and biogeographic history of epiphytic thalloid liverworts. , 2021, Molecular phylogenetics and evolution.

[4]  C. Labandeira,et al.  Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination , 2021, Proceedings of the Royal Society B.

[5]  N. Matzke Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels, and is therefore valid , 2021, Journal of Biogeography.

[6]  G. Ortí,et al.  Phylogenomics and Historical Biogeography of Seahorses, Dragonets, Goatfishes, and Allies (Teleostei: Syngnatharia): Assessing Factors Driving Uncertainty in Biogeographic Inferences. , 2021, Systematic biology.

[7]  Haijun Song,et al.  Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years , 2021, Earth-Science Reviews.

[8]  A. Gentry,et al.  Arc tempos, tectonic styles, and sedimentation patterns during evolution of the North American Cordillera: Constraints from the retroarc detrital zircon archive , 2021 .

[9]  N. Ikegami,et al.  Paleoclimate and ecology of Cretaceous continental ecosystems of Japan inferred from the stable oxygen and carbon isotope compositions of vertebrate bioapatite , 2021, Journal of Asian Earth Sciences.

[10]  D. Silvestro,et al.  The rise of angiosperms pushed conifers to decline during global cooling , 2020, Proceedings of the National Academy of Sciences.

[11]  S. Magallón,et al.  The delayed and geographically heterogeneous diversification of flowering plant families , 2020, Nature Ecology & Evolution.

[12]  Zhiduan Chen,et al.  A dated phylogeny of Lardizabalaceae reveals an unusual long‐distance dispersal across the Pacific Ocean and the rapid rise of East Asian subtropical evergreen broadleaved forests in the late Miocene , 2020, Cladistics : the international journal of the Willi Hennig Society.

[13]  A. Börner,et al.  Papaveraceae , 2020, Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe.

[14]  De‐Zhu Li,et al.  Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous. , 2019, Molecular phylogenetics and evolution.

[15]  Yan Yu,et al.  RASP 4: ancestral state reconstruction tool for multiple genes and characters. , 2019, Molecular biology and evolution.

[16]  C. dePamphilis,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.

[17]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[18]  Pamela S Soltis,et al.  Origin of angiosperms and the puzzle of the Jurassic gap , 2019, Nature Plants.

[19]  C. Detrain,et al.  Impact of seed abundance on seed processing and dispersal by the red ant Myrmica rubra , 2018, Ecological Entomology.

[20]  I. Michalak,et al.  The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae) , 2018, Journal of Biogeography.

[21]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[22]  Richard H. Ree,et al.  Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection , 2018 .

[23]  A. Graham The role of land bridges, ancient environments, and migrations in the assembly of the North American flora , 2018 .

[24]  Muxing Liu,et al.  Differential importance of consecutive dispersal phases in two ant‐dispersed Corydalis species (Papaveraceae) , 2018 .

[25]  Carl Boettiger,et al.  R Python, and Ruby clients for GBIF species occurrence data , 2017 .

[26]  Emmanuel F. A. Toussaint,et al.  Cretaceous West Gondwana vicariance shaped giant water scavenger beetle biogeography , 2017 .

[27]  Yanxia Sun,et al.  Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family , 2017, BMC Genomics.

[28]  R. Olmstead,et al.  Bayesian estimation of the global biogeographical history of the Solanaceae , 2017 .

[29]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[30]  S. Buerki,et al.  Molecular phylogenetics and molecular clock dating of Sapindales based on plastid rbcL, atpB and trnL-trnF DNA sequences , 2016 .

[31]  Li Lin,et al.  The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae , 2016, Scientific Reports.

[32]  Kangshan Mao,et al.  Puzzling rocks and complicated clocks: how to optimize molecular dating approaches in historical phytogeography. , 2016, The New phytologist.

[33]  S. B. Hoot,et al.  Phylogeny and Character Evolution of Papaveraceae s. l. (Ranunculales) , 2015 .

[34]  V. N. Suárez-Santiago,et al.  Evolutionary history of fumitories (subfamily Fumarioideae, Papaveraceae): An old story shaped by the main geological and climatic events in the Northern Hemisphere. , 2015, Molecular phylogenetics and evolution.

[35]  B. Oxelman,et al.  Assignment of homoeologs to parental genomes in allopolyploids for species tree inference, with an example from Fumaria (papaveraceae). , 2015, Systematic biology.

[36]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[37]  T J Davies,et al.  The enigma of the rise of angiosperms: can we untie the knot? , 2014, Ecology letters.

[38]  A. Franc,et al.  Tectonic-driven climate change and the diversification of angiosperms , 2014, Proceedings of the National Academy of Sciences.

[39]  T. Stadler,et al.  Epiphytic leafy liverworts diversified in angiosperm-dominated forests , 2014, Scientific Reports.

[40]  Leonidas Brikiatis The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography , 2014 .

[41]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[42]  A. Herman,et al.  Albian-Paleocene flora of the north pacific: Systematic composition, palaeofloristics and phytostratigraphy , 2013, Stratigraphy and Geological Correlation.

[43]  L. Hickey,et al.  Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture. , 2013, American journal of botany.

[44]  N. Wahlberg,et al.  Timing and Patterns in the Taxonomic Diversification of Lepidoptera (Butterflies and Moths) , 2013, PloS one.

[45]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[46]  Chengshan Wang,et al.  Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China , 2013 .

[47]  Xiao-Ju Yang,et al.  Occurrences of Early Cretaceous fossil woods in China: Implications for paleoclimates , 2013 .

[48]  Wai Lok Sibon Li,et al.  Accurate model selection of relaxed molecular clocks in bayesian phylogenetics. , 2012, Molecular biology and evolution.

[49]  N. Matzke Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .

[50]  Brian C. O'Meara,et al.  treePL: divergence time estimation using penalized likelihood for large phylogenies , 2012, Bioinform..

[51]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[52]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[53]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[54]  S. Dekker,et al.  A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution , 2012, Nature Communications.

[55]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[56]  Fredrik Ronquist,et al.  Phylogenetic Methods in Biogeography , 2011 .

[57]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[58]  G. Vermeij The Energetics of Modernization: The Last One Hundred Million Years of Biotic Evolution , 2011 .

[59]  T. Brodribb,et al.  Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution , 2011, Proceedings of the National Academy of Sciences.

[60]  F. Forest,et al.  An evaluation of new parsimony‐based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae , 2011 .

[61]  R. Spicer,et al.  The late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils , 2010 .

[62]  D. Soltis,et al.  T HE AGE AND DIVERSIFICATION OF THE ANGIOSPERMS RE - REVISITED 1 , 2010 .

[63]  Jung‐Eun Lee,et al.  An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity , 2010, Proceedings of the Royal Society B: Biological Sciences.

[64]  R. Müller,et al.  The role of oceanic plateau subduction in the Laramide orogeny , 2010 .

[65]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[66]  S. Zachgo,et al.  Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[67]  B. Redelings,et al.  Reconstructing ancestral ranges in historical biogeography: properties and prospects , 2009 .

[68]  D. Soltis,et al.  Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). , 2009, Systematic biology.

[69]  B. LePage Earliest Occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska: Evolution, Biogeography, and Paleoecology , 2009 .

[70]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[71]  Zhiduan Chen,et al.  Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data , 2009 .

[72]  S. Jacomet Plant economy and village life in Neolithic lake dwellings at the time of the Alpine Iceman , 2009 .

[73]  W. Friedman The meaning of Darwin's 'abominable mystery'. , 2009, American journal of botany.

[74]  Marcello Ruta,et al.  Dinosaurs and the Cretaceous Terrestrial Revolution , 2008, Proceedings of the Royal Society B: Biological Sciences.

[75]  E. Conti,et al.  Phylogenetic analysis informed by geological history supports multiple, sequential invasions of the Mediterranean Basin by the angiosperm family Araceae. , 2008, Systematic biology.

[76]  P. Upchurch Gondwanan break-up: legacies of a lost world? , 2008, Trends in ecology & evolution.

[77]  Stephen A. Smith,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[78]  Matthew A. Gitzendanner,et al.  Resolving an ancient, rapid radiation in Saxifragales. , 2008, Systematic biology.

[79]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[80]  H. Sauquet,et al.  Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break‐up of Gondwana , 2007 .

[81]  B. Gomez,et al.  Early Cretaceous angiosperm invasion of Western Europe and major environmental changes. , 2007, Annals of botany.

[82]  Tony O’Hagan Bayes factors , 2006 .

[83]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[84]  M. Matsukawa,et al.  Paleogeographic and paleoclimatic setting of Lower Cretaceous basins of East Asia and western North America, with reference to the nonmarine strata , 2006 .

[85]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[86]  K. Bremer,et al.  Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. , 2005, American journal of botany.

[87]  J. Kadereit,et al.  Phylogeny of prickly poppies,Argemone (Papaveraceae), and the evolution of morphological and alkaloid characters based on ITS nrDNA sequence variation , 1999, Plant Systematics and Evolution.

[88]  J. English,et al.  The Laramide Orogeny: What Were the Driving Forces? , 2004 .

[89]  P. Manos,et al.  The Historical Biogeography of Fagaceae: Tracking the Tertiary History of Temperate and Subtropical Forests of the Northern Hemisphere , 2001, International Journal of Plant Sciences.

[90]  M. Sanderson,et al.  ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES , 2001, Evolution; international journal of organic evolution.

[91]  Fredrik Ronquist,et al.  Patterns of animal dispersal, vicariance and diversification in the Holarctic , 2001 .

[92]  U. R. Smith Revision of the Cretaceous Fossil Genus Palaeoaster (Papaveraceae) and Clarification of Pertinent Species of Eriocaulon, Palaeoaster, and Sterculiocarpus , 2001 .

[93]  D. Dilcher Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[94]  D. Grimaldi The Co-Radiations of Pollinating Insects and Angiosperms in the Cretaceous , 1999 .

[95]  S. B. Hoot,et al.  Data Congruence and Phylogeny of the Papaveraceae s.l. Based on Four Data Sets: atpB and rbcL Sequences, trnK Restriction Sites, and Morphological Characters , 1997 .

[96]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[97]  Fumariaceae , 1995, Plants of the Rio Grande Delta.

[98]  C. Guyer,et al.  Testing Whether Certain Traits have Caused Amplified Diversification: An Improved Method Based on a Model of Random Speciation and Extinction , 1993, The American Naturalist.

[99]  R. Livaccari Role of crustal thickening and extensional collapse in the tectonic evolution of the Sevier-Laramide orogeny, western United States , 1991 .

[100]  R. Stockey,et al.  Flowers and fruits of Princetonia allenbyensis (Magnoliopsida; family indet.) from the Middle Eocene Princeton chert of British Columbia , 1991 .

[101]  S. Lidgard,et al.  Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras , 1990, Paleobiology.

[102]  R. Stockey A permineralized flower from the Middle Eocene of British Columbia , 1987 .

[103]  J. A. Wolfe,et al.  North American nonmarine climates and vegetation during the Late Cretaceous , 1987 .

[104]  J. A. Wolfe Some Aspects of Plant Geography of the Northern Hemisphere During the Late Cretaceous and Tertiary , 1975 .