Partial regularity for stationary harmonic maps into spheres

In an interesting recent paper [12], F. HI~LEIN has shown that any weakly harmonic mapping from a two-dimensional surface into a sphere is smooth. I present here a kind of generalization to higher dimensions, asserting in effect that a stationary harmonic mapping from an open subset of Nn(n __> 3) into a sphere is smooth, except possibly for a closed singular set of (n 2 ) dimensional Hausdorff measure zero. My proof crucially depends upon several of H~L~IN's observations (as streamlined by P.-L. LIoNs). To state the result precisely let us suppose that m, n => 2, U is a smooth open subset of Nn, and S m-1 denotes the unit sphere in Nm. A function u in the Sobolev space HI (U;Rm) , u = (u 1 . . . . ,urn), belongs to H I ( U ; S ml ) provided t u[ = 1 a.e. in U

[1]  Stefan Müller,et al.  A surprising higher integrability property of mappings with positive determinant , 1989 .

[2]  Haim Brezis,et al.  Regularity of minimizers of relaxed problems for harmonic maps , 1991 .

[3]  Charles Fefferman,et al.  Characterizations of bounded mean oscillation , 1971 .

[4]  Peter Price,et al.  A monotonicity formula for Yang-Mills fields , 1983 .

[5]  D. Kinderlehrer,et al.  Stable defects of minimizers of constrained variational principles , 1988 .

[6]  Sagun Chanillo,et al.  Sobolev inequalities involving divergence free maps , 1991 .

[7]  Stephan Luckhaus,et al.  Partial hölder continuity for minima of certain energies among maps into a Riemannian manifold , 1988 .

[8]  Jean-Michel Coron,et al.  Relaxed Energies for Harmonic Maps , 1990 .

[9]  Alberto Torchinsky,et al.  Real-Variable Methods in Harmonic Analysis , 1986 .

[10]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[11]  E. Stein,et al.  Hp spaces of several variables , 1972 .

[12]  F. Lin,et al.  Mappings minimizing the Lp norm of the gradient , 1987 .

[13]  Richard Schoen,et al.  Analytic Aspects of the Harmonic Map Problem , 1984 .

[14]  Jiří Souček,et al.  The dirichlet energy of mappings with values into the sphere , 1989 .

[15]  Y. Meyer,et al.  Compacité par compensation et espaces de Hardy , 1989 .

[16]  Jalal Shatah,et al.  Weak solutions and development of singularities of the SU(2) σ‐model , 1988 .

[17]  Frédéric Hélein,et al.  Regularity of weakly harmonic maps from a surface into a manifold with symmetries , 1991 .

[18]  Karen Uhlenbeck,et al.  A regularity theory for harmonic maps , 1982 .

[19]  L. Evans MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .

[20]  Michael Grüter,et al.  Regularity of weak H-surfaces. , 1981 .

[21]  F. Hélein Régularité des applications faiblement harmoniques entre une surface et une sphère , 1990 .