Generalized Fishburn numbers and torus knots

Andrews and Sellers recently initiated the study of arithmetic properties of Fishburn numbers. In this paper, we prove prime power congruences for generalized Fishburn numbers. These numbers are the coefficients in the $1-q$ expansion of the Kontsevich-Zagier series $\mathscr{F}_{t}(q)$ for the torus knots $T(3,2^t)$, $t \geq 2$. The proof uses a strong divisibility result of Ahlgren, Kim and Lovejoy and a new "strange identity" for $\mathscr{F}_{t}(q)$.

[1]  R. Kashaev The Hyperbolic Volume of Knots from the Quantum Dilogarithm , 1996, q-alg/9601025.

[2]  James A. Sellers,et al.  CONGRUENCES FOR THE FISHBURN NUMBERS , 2014, 1401.5345.

[3]  Zachary A. Kent,et al.  Congruences for Taylor expansions of quantum modular forms , 2014, 1411.1047.

[4]  DIFFERENCE EQUATION OF THE COLORED JONES POLYNOMIAL FOR TORUS KNOT , 2004, math/0403224.

[5]  A. Straub Congruences for Fishburn numbers modulo prime powers , 2014, 1407.7521.

[6]  Anh T. Tran,et al.  Knot Cabling and the Degree of the Colored Jones Polynomial , 2015, 1501.01574.

[7]  H. Murakami An Introduction to the Volume Conjecture , 2010, 1002.0126.

[8]  Frank G. Garvan,et al.  Congruences and relations for r-Fishburn numbers , 2014, J. Comb. Theory, Ser. A.

[9]  Byungchan Kim,et al.  Dissections of Strange q-Series , 2018, Annals of Combinatorics.

[10]  Patterns and Stability in the Coefficients of the Colored Jones Polynomial / - eScholarship , 2014 .

[11]  R. Osburn,et al.  The colored Jones polynomial and Kontsevich–Zagier series for double twist knots , 2017, 1710.04865.

[12]  A formula for the colored Jones polynomial of 2-bridge knots , 2008 .

[13]  Thang T. Q. Lê Quantum invariants of 3-manifolds: Integrality, splitting, and perturbative expansion , 2000, math/0004099.

[14]  Lucy Joan Slater,et al.  Further Identities of the Rogers‐Ramanujan Type , 1952 .

[15]  Darren D. Long,et al.  Plane curves associated to character varieties of 3-manifolds , 1994 .

[16]  J. Murakami,et al.  The colored Jones polynomials and the simplicial volume of a knot , 1999, math/9905075.

[17]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[18]  D. Zagier Quantum modular forms , 2010 .

[19]  q-Series and L-functions related to half-derivatives of the Andrews-Gordon identity , 2003, math/0303250.

[20]  S. Garoufalidis The Jones slopes of a knot , 2009, 0911.3627.

[21]  A. Kirillov,et al.  Hypergeometric generating function of l-function, slater’s identities, and quantum invariant , 2004, math-ph/0406042.

[22]  Skein-theoretical derivation of some formulas of Habiro , 2003, math/0306345.

[23]  R. Osburn,et al.  Quantum modularity of partial theta series with periodic coefficients , 2020, 2012.02457.

[25]  D. Zagier Vassiliev invariants and a strange identity related to the Dedekind eta-function , 2001 .

[26]  A. Stoimenow ENUMERATION OF CHORD DIAGRAMS AND AN UPPER BOUND FOR VASSILIEV INVARIANTS , 1998 .