New Advances and Possibilities in Active Circuit Design

Operational amplifiers are important building blocks for analog circuit design. Unfortunately, their limited performance such as bandwidth, slew-rate etc. leads the analog designer to search other possibilites and other building blocks. As a result, new current-mode active building blocks such as operational transconductance amplifiers (OTA), second generation current conveyors (CCII), current-feedback op- amps (CFOA), four terminal floating nullors (FTFN), differential voltage current conveyor (DVCC), differential difference current conveyor (DDCC), third-generation current- conveyor (CCIII), dual X current conveyors (DXCCII), current controlled current conveyors (CCCII) etc. received considerable attention due to their larger dynamic range and wider bandwidth. Employing these new active elements for analog design and using CMOS technology for implementation the circuit designers obtained new possibilites to solve their problems. This work covers new advances and possibilities in the related research area including application on communication, measurement and RF systems.

[1]  Hakan Kuntman,et al.  On the design of CCII+ based relaxation oscillator employing single grounded passive element for linear period control , 1998 .

[2]  Alain Fabre,et al.  Current controlled bandpass filter based on translinear conveyors , 1995 .

[3]  Hakan Kuntman,et al.  On the oscillator implementations using a single current feedback op-amp , 2002, Comput. Electr. Eng..

[4]  Uğur Cam,,et al.  New Voltage and Current Mode First-order All-pass Filters Using Single FTFN , 2000 .

[5]  Hakan Kuntman,et al.  Canonical Biquadratic All-pass and Notch Filters Employing Differential Difference Current Conveyor , 2003 .

[6]  Hakan Kuntman,et al.  CMOS four terminal floating nullor design using a simple approach , 1999 .

[7]  Gordon W. Roberts,et al.  A general class of current amplifier-based biquadratic filter circuits , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[8]  A. Toker,et al.  Supplementary all-pass sections with reduced number of passive elements using a single current conveyor , 2001 .

[9]  Hakan Kuntman,et al.  On the realization of DO-OTA-C oscillators , 1998 .

[10]  Kirat Pal Modified current conveyors and their applications , 1989 .

[11]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[12]  Vinod Kumar Singh,et al.  Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers , 1996 .

[13]  Shahram Minaei,et al.  High output impedance current-mode lowpass, bandpass and highpass filters using current controlled conveyors , 2001 .

[14]  Hakan Kuntman,et al.  Current-mode active-only universal bi-quad filter employing CCIIs and OTAs , 2009, 2009 Applied Electronics.

[15]  Hakan Kuntman,et al.  ON THE DESIGN OF NEW CMOS DO-OTA TOPOLOGIES PROVIDING HIGH OUTPUT IMPEDANCE AND EXTENDED LINEARITY RANGE , 2005 .

[17]  SHAHRAM MINAEI,et al.  Electronically tunable, active only floating inductance simulation , 2003 .

[18]  Hakan Kuntman,et al.  Cascadable Current Mode Multipurpose Filters Employing Current Differencing Buffered Amplifier (CDBA) , 2002 .

[19]  Hakan Kuntman,et al.  New Oscillator Topologies Using Inverting Second-Generation Current Conveyors , 2002 .

[20]  A. Toker,et al.  The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters , 2003 .

[21]  Hakan Kuntman,et al.  Universal Series and Parallel Immittance Simulators Using Four Terminal Floating Nullors , 2000 .

[22]  Hakan Kuntman,et al.  A new CMOS Differential OTRA Design for the Low Voltage Power Supplies in the Sub-Micron Technologies , 2005 .

[23]  Hakan Kuntman,et al.  Actively simulated grounded lossy inductors using third generation current conveyors , 2000 .

[24]  O. Cicekoglu,et al.  A modified Third Generation Current Conveyor, its Characterization and Applications , 2002 .

[25]  Shahram Minaei,et al.  A new CMOS electronically tunable current conveyor and its application to current-mode filters , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Hakan Kuntman,et al.  A new low voltage CMOS differential OTRA for sub-micron technologies , 2007 .

[27]  Hakan Kuntman,et al.  On the realization of OTA-C oscillators , 1998 .

[28]  Hakan Kuntman,et al.  Novel Lossless Floating Immittance Simulator Employing Only Two FTFNs , 2001 .

[29]  Hassan Elwan,et al.  Low-voltage low-power CMOS current conveyors , 1997 .

[30]  Shen-Iuan Liu Cascadable current-mode filters using single FTFN , 1995 .

[31]  Christofer Toumazou,et al.  Wideband and high gain current-feedback opamp , 1992 .

[32]  Hakan Kuntman,et al.  Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs , 2007 .

[33]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[34]  Hakan Kuntman,et al.  On the design of low-frequency filters using CMOS OTAs operating in the subthreshold region , 1999 .

[35]  Hakan Kuntman,et al.  Novel approach to the calculation of non-linear harmonic distortion coefficients in CMOS amplifiers , 1998 .

[36]  Gordon W. Roberts,et al.  The current conveyor: history, progress and new results , 1990 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Hakan Kuntman,et al.  A new CCII-based sinusoidal oscillator providing fully independent control of oscillation condition and frequency , 1998 .

[39]  Bilgin Metin,et al.  A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application , 2010 .

[40]  Shahram Minaei,et al.  Realisation of nth-order current transfer function employing ECCIIs and application examples , 2009 .

[41]  Muhammad Taher Abuelma'atti Cascadable current-mode filters using single FTFN , 1996 .

[42]  Hakan Kuntman,et al.  On the realization of OTA-C filters , 1993, Int. J. Circuit Theory Appl..

[43]  Ahmed M. Soliman,et al.  Current-mode Single-Input Three-Output (SITO) Universal Filter Employing FTFNs and Reduced Number of Passive Components , 2000 .

[44]  M. Higashimura,et al.  Current-mode allpass filter using FTFN with grounded capacitor , 1991 .

[45]  R. Senani A novel application of four-terminal floating nullors , 1987, Proceedings of the IEEE.

[46]  Christofer Toumazou,et al.  Current-feedback opamp suitable for CMOS VLSI technology , 1996 .

[47]  Hakan Kuntman,et al.  New active gyrator circuit suitable for frequency-dependent negative resistor implementation , 1999 .

[48]  Jiann-Horng Tsay,et al.  Single-resistance-controlled sinusoidal oscillator using current-feedback amplifiers , 1996 .

[49]  Shahram Minaei,et al.  DVCC based differential-mode all-pass and notch filters with high CMRR , 2006 .

[50]  Hakan Kuntman,et al.  High-output-impedance CMOS dual-output OTA suitable for wide-range continuous time filtering applications , 1999 .

[51]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[52]  Hakan Kuntman,et al.  Multi-input single-output filter with reduced number of passive elements employing single current conveyor , 2003, Comput. Electr. Eng..

[53]  Hakan Kuntman,et al.  Realization of Current-Mode Third Order Butterworth Filters Employing Equal Valued Passive Elements and Unity Gain Buffers , 2002 .

[54]  O. Cicekoglu,et al.  Insensitive Multifunction Filter Implemented with Current Conveyors and only Grounded Passive Elements , 1999 .

[55]  Hakan Kuntman,et al.  High-output-impedance transadmittance type continuous-time multifunction filter with minimum active elements , 2001 .

[56]  Shahram Minaei,et al.  A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements , 2005 .

[57]  F. Kacar,et al.  On the realization of the FDNR simulators using only a single current feedback operational amplifier , 2009, 2009 International Conference on Electrical and Electronics Engineering - ELECO 2009.

[58]  Hakan Kuntman,et al.  Current-Mode High Output Impedance Multifunction Filters Employing Minimum Number of FTFNs , 2001 .

[59]  Hakan Kuntman,et al.  Single DDCC Biquads with High Input Impedance and Minimum Number of Passive Elements , 2005 .

[60]  Hassan Elwan,et al.  Novel CMOS differential voltage current conveyor and its applications , 1997 .

[61]  Hakan Kuntman,et al.  Current-mode Single-Input Three-Output (SITO) Universal Filter Employing FTFNs and Reduced Number of Passive Components , 2000 .

[62]  Hakan Kuntman,et al.  Design of a fully differential current mode operational amplifier with improved input–output impedances and its filter applications , 2008 .

[63]  Hakan Kuntman,et al.  Novel electronically tunable FDNR simulator employing single FDCCII , 2009, 2009 European Conference on Circuit Theory and Design.

[64]  Hakan Kuntman,et al.  Improved Realization of Mixed-Mode Chaotic Circuit , 2002, Int. J. Bifurc. Chaos.

[65]  Hakan Kuntman,et al.  Wide Dynamic Range High Output Impedance Current-mode Multifunction Filters with Dual-output Current Conveyors , 2002 .

[66]  Hakan Kuntman,et al.  A new cmos current differencing transconductance amplifier (CDTA) and its biquad filter application , 2009, IEEE EUROCON 2009.

[67]  Shen-Iuan Liu Single-resistance-controlled sinusoidal oscillator using two FTFNs , 1997 .

[68]  Hakan Kuntman,et al.  Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier , 2000 .

[69]  Serdar Ozoguz,et al.  A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters , 1999 .

[70]  C. Aldea,et al.  Grounded resistor controlled sinusoidal oscillator using CFOAs , 1997 .

[71]  Hakan Kuntman,et al.  Universal immittance function simulators using current conveyors , 2001, Comput. Electr. Eng..