Mercury 4.0: from visualization to analysis, design and prediction

An overview of Mercury 4.0, an analysis, design and prediction platform that acts as a hub for the entire Cambridge Structural Database software suite, is presented.

[1]  Derui Liu,et al.  ACC , 2020, Catalysis from A to Z.

[2]  Sakinah,et al.  Vol. , 2020, New Medit.

[3]  Gautam R Desiraju,et al.  Crystal Engineering: An Outlook for the Future. , 2019, Angewandte Chemie.

[4]  J. Ellena,et al.  Esterification of the free carboxylic group from the lutidinic acid ligand as a tool to improve the cytotoxicity of Ru(ii) complexes , 2019, Inorganic Chemistry Frontiers.

[5]  Sten O. Nilsson Lill,et al.  Elucidating an Amorphous Form Stabilization Mechanism for Tenapanor Hydrochloride: Crystal Structure Analysis Using X-ray Diffraction, NMR Crystallography, and Molecular Modeling. , 2018, Molecular pharmaceutics.

[6]  Patrick McCabe,et al.  Knowledge-Based Conformer Generation Using the Cambridge Structural Database , 2018, J. Chem. Inf. Model..

[7]  Amy A Sarjeant,et al.  Evaluating Competing Intermolecular Interactions through Molecular Electrostatic Potentials and Hydrogen-Bond Propensities , 2018 .

[8]  J. Cole,et al.  Improved crystal structure solution from powder diffraction data by the use of conformational information , 2017, Acta Crystallographica Section A Foundations and Advances.

[9]  M. López-Ibáñez,et al.  Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm , 2017 .

[10]  T. Leyssens,et al.  A Study of Fasoracetam's Solid State Forms: A Potential Anti-Alzheimer Pharmaceutical. , 2017, Journal of pharmaceutical sciences.

[11]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[12]  Ian J. Bruno,et al.  The next dimension of structural science communication: simple 3D printing directly from a crystal structure , 2017 .

[13]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[14]  Powder X-ray diffraction of darunavir ethanolate, C27H37N3O7S(C2H5OH) , 2015, Powder Diffraction.

[15]  Cheryl L. Doherty,et al.  The integration of solid‐form informatics into solid‐form selection , 2015, The Journal of pharmacy and pharmacology.

[16]  P. Naumov,et al.  Perpetually self-propelling chiral single crystals. , 2015, Journal of the American Chemical Society.

[17]  J. McMahon,et al.  A molecular picture of the problems in ensuring structural purity of tazofelone , 2014 .

[18]  Jian-rong Wang,et al.  Structural and physicochemical aspects of hydrochlorothiazide co-crystals , 2014 .

[19]  Colin R. Groom,et al.  Knowledge-based approaches to co-crystal design , 2014 .

[20]  E. Wang,et al.  Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity , 2014 .

[21]  Tjelvar S. G. Olsson,et al.  Evaluation of molecular crystal structures using Full Interaction Maps , 2013 .

[22]  Graham Buckton,et al.  Application of hydrogen-bond propensity calculations to an indomethacin-nicotinamide (1:1) co-crystal , 2013 .

[23]  H. Titi,et al.  Coordination polymers of flexible polycarboxylic acids with metal ions. V. polymeric frameworks of 5-(3,5-dicarboxybenzyloxy)-3-pyridine carboxylic acid with Cd(II), Cu(II), Co(II), Mn(II) and Ni(II) ions; synthesis, structure, and magnetic properties , 2013 .

[24]  Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations: Application to piroxicam form III. , 2012, Journal of pharmaceutical sciences.

[25]  Valerie J. Gillet,et al.  Development and validation of an improved algorithm for overlaying flexible molecules , 2012, Journal of Computer-Aided Molecular Design.

[26]  Patrick McCabe,et al.  New software for statistical analysis of Cambridge Structural Database data , 2011, Journal of applied crystallography.

[27]  L. Fábián,et al.  New solid forms of artemisinin obtained through cocrystallisation , 2010 .

[28]  Miranda L. Cheney,et al.  Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study , 2010 .

[29]  Frank H. Allen,et al.  Truly prospective prediction: inter- and intramolecular hydrogen bonding , 2010 .

[30]  David J. Watkin,et al.  Chemical crystallography–science, technology or a black art , 2010 .

[31]  Jason C. Cole,et al.  WebCSD: the online portal to the Cambridge Structural Database , 2010, Journal of applied crystallography.

[32]  Peter T. A. Galek,et al.  Knowledge-based H-bond prediction to aid experimental polymorph screening , 2009 .

[33]  László Fábián,et al.  Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals , 2009 .

[34]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[35]  Peter T. A. Galek,et al.  Knowledge-based model of hydrogen-bonding propensity in organic crystals. , 2007, Acta crystallographica. Section B, Structural science.

[36]  P. Kuppusamy,et al.  Structure and Oxygen-Sensing Paramagnetic Properties of a New Lithium 1,8,15,22-Tetraphenoxyphthalocyanine Radical Probe for Biological Oximetry , 2007 .

[37]  M. Jansen,et al.  Crystal structure and chemical bonding of the high-temperature phase of AgN3. , 2007, Inorganic chemistry.

[38]  Jason C. Cole,et al.  DASH: a program for crystal structure determination from powder diffraction data , 2006 .

[39]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[40]  Alan R. Kennedy,et al.  Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges , 2005 .

[41]  Jie Luo,et al.  Retrieval of Crystallographically-Derived Molecular Geometry Information , 2004, J. Chem. Inf. Model..

[42]  Owen Johnson,et al.  CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs , 2004 .

[43]  Jian Song,et al.  2‐(2‐Oxopyrrolidin‐1‐yl)­butyr­amide , 2003 .

[44]  R. Davey,et al.  Hydration in molecular crystals: A Cambridge structural database analysis , 2003 .

[45]  Polysulfonylamine, CLIX [1]. Eine Vielfalt supramolekularer Synthone in zwei Molekülkomplexen von Di(4-halogenbenzolsulfonyl)aminen mit Sauerstoffbasen / Polysulfonylamines, CLIX [1]. A Variety of Supramolecular Synthons in Two Molecular Complexes of Di(4-halobenzenesulfonyl)amines with Oxygen Bases , 2002 .

[46]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[47]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[48]  P. Willett,et al.  SuperStar: improved knowledge-based interaction fields for protein binding sites. , 2001, Journal of molecular biology.

[49]  Robin Taylor,et al.  IsoStar: A library of information about nonbonded interactions , 1997, J. Comput. Aided Mol. Des..

[50]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[51]  A. Gavezzotti,et al.  Are Crystal Structures Predictable , 1994 .

[52]  A. Gavezzotti,et al.  Geometry of the Intermolecular X-H.cntdot..cntdot..cntdot.Y (X, Y = N, O) Hydrogen Bond and the Calibration of Empirical Hydrogen-Bond Potentials , 1994 .

[53]  T. Sugawara,et al.  Tautomerizaton of 2-Carboxy-1,3-dibenzo[a,c]tropolone in the Solid State. Possibility of a Symmetrical Structure of the Enol Form , 1992 .

[54]  T. Ishida,et al.  Structure of 5-methoxy-2-([4-methoxy-3,5-dimethyl-2-pyridinyl) methyl]sulfinyl)-1H-benzimidazole (omeprazole). , 1989, Acta crystallographica. Section C, Crystal structure communications.

[55]  A. Domenicano,et al.  Structural studies of benzene derivatives. III. The crystal and molecular structure of p-nitrobenzamide , 1977 .