Hybrid sediment gravity flow deposits – Classification, origin and significance

[1]  P. Haughton,et al.  Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea, UKCS , 2009 .

[2]  W. Nemec Aspects of Sediment Movement on Steep Delta Slopes , 2009 .

[3]  P. Haughton,et al.  Development of Rheological Heterogeneity in Clay-Rich High-Density Turbidity Currents: Aptian Britannia Sandstone Member, U.K. Continental Shelf , 2008 .

[4]  R. Schiebel,et al.  Onset of submarine debris flow deposition far from original giant landslide , 2007, Nature.

[5]  E. Fugelli,et al.  Delineating confined slope turbidite systems offshore mid-Norway: The Cretaceous deep-marine Lysing Formation , 2007 .

[6]  K. Schwehr,et al.  Origin of continental margin morphology: Submarine-slide or downslope current-controlled bedforms, a rock magnetic approach , 2007 .

[7]  E. Sumner,et al.  An experimental investigation of sand–mud suspension settling behaviour: implications for bimodal mud contents of submarine flow deposits , 2006 .

[8]  J. Dunham,et al.  Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia , 2006 .

[9]  P. Talling,et al.  Anatomy of turbidites and linked debrites based on long distance (120 × 30 km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy , 2006 .

[10]  Z. Sylvester,et al.  Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania , 2004 .

[11]  R. Wynn,et al.  Beds comprising debrite sandwiched within co‐genetic turbidite: origin and widespread occurrence in distal depositional environments , 2004 .

[12]  B. Kneller,et al.  The Interpretation of Vertical Sequences in Turbidite Beds: The Influence of Longitudinal Flow Structure , 2003 .

[13]  P. Haughton,et al.  ‘Linked’ debrites in sand‐rich turbidite systems – origin and significance , 2003 .

[14]  A. Palfrey,et al.  Facies of slurry‐flow deposits, Britannia Formation (Lower Cretaceous), North Sea: implications for flow evolution and deposit geometry , 2003 .

[15]  J. Best,et al.  Turbulence Modulation in Clay-Rich Sediment-Laden Flows and Some Implications for Sediment Deposition , 2002 .

[16]  Jeffrey G. Marr,et al.  Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures , 2001 .

[17]  B. Kneller,et al.  Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation , 2001 .

[18]  J. Alexander,et al.  The physical character of subaqueous sedimentary density flows and their deposits , 2001 .

[19]  G. Blackbourn,et al.  Britannia Field, UK North Sea: petrographic constraints on Lower Cretaceous provenance, facies and the origin of slurry-flow deposits , 2000, Petroleum Geoscience.

[20]  P. Haughton Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain , 2000 .

[21]  Ben Kneller,et al.  The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications , 2000 .

[22]  D. Stow,et al.  Deep-water massive sands: nature, origin and hydrocarbon implications , 2000 .

[23]  D. Lowe,et al.  Slurry‐flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem , 2000 .

[24]  Allen,et al.  The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows , 1999 .

[25]  Pierre Cochonat,et al.  The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar , 1999 .

[26]  R. Higgs Return of `The Fan That Never Was': Westphalian turbidite systems in the Variscan Culm Basin: Bude Formation (south‐west England) , 1998 .

[27]  T. Mulder,et al.  Numerical modelling of a mid‐sized gravity flow: the 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact) , 1997 .

[28]  J. Syvitski,et al.  Evidence for an earthquake-triggered basin collapse in Saguenay Fjord, Canada , 1996 .

[29]  Michael J. Branney,et al.  Sustained high‐density turbidity currents and the deposition of thick massive sands , 1995 .

[30]  Kelin X. Whipple,et al.  Hydroplaning of subaqueous debris flows , 1995 .

[31]  G. Ghibaudo Subaqueous sediment gravity flow deposits: practical criteria for their field description and classification , 1992 .

[32]  D. B. Prior,et al.  Flow properties of turbidity currents in Bute Inlet, British Columbia , 1991 .

[33]  R. Hiscott,et al.  Deep Marine Environments: Clastic sedimentation and tectonics , 1989 .

[34]  W. Nemec,et al.  Large floating clasts in turbidites: a mechanism for their emplacement , 1988 .

[35]  I. N. McCave,et al.  Deposition of ungraded muds from high-density non-turbulent turbidity currents , 1988, Nature.

[36]  A. Aksu,et al.  The source and origin of the 1929 grand banks turbidity current inferred from sediment budgets , 1987 .

[37]  A. Bouma Megaturbidite: An acceptable term? , 1987 .

[38]  K. Kleverlaan Gordo megabed: a possible seismite in a tortonian submarine fan, tabernas basin, province almeria, southeast spain , 1987 .

[39]  R. Madariaga,et al.  Eocene seismicity in the Pyrenees from megaturbidites of the South Pyrenean Basin (Spain) , 1984 .

[40]  F. Lucchi,et al.  Seismoturbidites: A new group of resedimented deposits , 1984 .

[41]  R. V. Fisher Flow transformations in sediment gravity flows , 1983 .

[42]  D. Lowe Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents , 1982 .

[43]  F. Lucchi,et al.  Basin‐wide turbidites in a Miocene, over‐supplied deep‐sea plain: a geometrical analysis , 1980 .

[44]  M. Hampton,et al.  The Role of Subaqueous Debris Flow in Generating Turbidity Currents , 1972 .

[45]  A. Smith,et al.  Two undescribed structures in a greywacke series , 1958 .

[46]  Alec J. Smith,et al.  THE SEDIMENTATION AND SEDIMENTARY HISTORY OF THE ABERYSTWYTH GRITS (UPPER LLANDOVERIAN) , 1958, Quarterly Journal of the Geological Society of London.

[47]  H. Reading,et al.  Sedimentary Environments: Processes, Facies And Stratigraphy , 2011 .

[48]  R. Holdsworth,et al.  Geological Society Special Publications , 2005 .

[49]  D. Waltham Flow Transformations in Particulate Gravity Currents , 2004 .

[50]  M. Kawamura,et al.  Sediment Flow and Deformation (SFD) Layers: Evidence for Intrastratal Flow in Laminated Muddy Sediments of the Triassic Osawa Formation, Northeast Japan , 2002 .

[51]  T. Elliott Depositional Architecture of a Sand-Rich, Channelized Turbidite System: The Upper Carboniferous Ross Sandstone Formation, Western Ireland , 2000 .

[52]  R. Walker,et al.  Upper Carboniferous Deep Water Sediments, Western Ireland: Analogues for Passive Margin Turbidite Plays , 2000 .

[53]  K. Grimm,et al.  Speckled Beds: Distinctive Gravity-Flow Deposits in Finely Laminated Diatomaceous Sediments, Miocene Monterey Formation, California , 1999 .

[54]  N. Herbert,et al.  The Schiehallion development , 1999 .

[55]  G. Shanmugam High-Density Turbidity Currents: Are They Sandy Debris Flows?: PERSPECTIVES , 1996 .

[56]  D. Stow,et al.  A classification scheme for shale clasts in deep water sandstones , 1995, Geological Society, London, Special Publications.

[57]  Thomas C. Pierson,et al.  A rheologic classification of subaerial sediment-water flows , 1987 .

[58]  M. Leeder Sediment gravity flows , 1982 .