Functional mapping — how to map and study the genetic architecture of dynamic complex traits

The development of any organism is a complex dynamic process that is controlled by a network of genes as well as by environmental factors. Traditional mapping approaches for analysing phenotypic data measured at a single time point are too simple to reveal the genetic control of developmental processes. A general statistical mapping framework, called functional mapping, has been proposed to characterize, in a single step, the quantitative trait loci (QTLs) or nucleotides (QTNs) that underlie a complex dynamic trait. Functional mapping estimates mathematical parameters that describe the developmental mechanisms of trait formation and expression for each QTL or QTN. The approach provides a useful quantitative and testable framework for assessing the interplay between gene actions or interactions and developmental changes.

[1]  L. Walford,et al.  Bioenergetics and Growth , 1947 .

[2]  L. von Bertalanffy Quantitative Laws in Metabolism and Growth , 1957, The Quarterly Review of Biology.

[3]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[4]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  A. Hallauer,et al.  Quantitative Genetics in Maize Breeding , 1981 .

[7]  William R. Atchley,et al.  Ontogeny, Timing of Development, and Genetic Variance-Covariances Structure , 1984, The American Naturalist.

[8]  K. Davies,et al.  Genetic mapping of the human X chromosome by using restriction fragment length polymorphisms. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Oller,et al.  Consensus and controversy , 1984 .

[10]  L. Norton A Gompertzian model of human breast cancer growth. , 1988, Cancer research.

[11]  M. Kirkpatrick,et al.  A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters , 1989, Journal of mathematical biology.

[12]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.

[13]  S. Scheiner Genetics and Evolution of Phenotypic Plasticity , 1993 .

[14]  Karl J. Niklas,et al.  Botanical Scaling. (Book Reviews: Plant Allometry. The Scaling of Form and Process.) , 1994 .

[15]  Z. Zeng Precision mapping of quantitative trait loci. , 1994, Genetics.

[16]  W. G. Hill,et al.  Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. , 1994, Genetical research.

[17]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[18]  R. Jansen,et al.  University of Groningen High Resolution of Quantitative Traits Into Multiple Loci via Interval Mapping , 2022 .

[19]  M. Whitlock,et al.  MULTIPLE FITNESS PEAKS AND EPISTASIS , 1995 .

[20]  R Gomulkiewicz,et al.  Adaptive phenotypic plasticity: consensus and controversy. , 1995, Trends in ecology & evolution.

[21]  Z B Zeng,et al.  Multiple trait analysis of genetic mapping for quantitative trait loci. , 1995, Genetics.

[22]  P. Klinkhamer Plant allometry: The scaling of form and process , 1995 .

[23]  J. Cheverud,et al.  Quantitative trait loci for murine growth. , 1996, Genetics.

[24]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[25]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[26]  J. Kingsolver,et al.  Thermal Sensitivity of Growth and Feeding in Manduca sexta Caterpillars , 1997, Physiological Zoology.

[27]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[28]  S. Rice,et al.  The analysis of ontogenetic trajectories: when a change in size or shape is not heterochrony. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Heath Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. , 1997, American journal of human genetics.

[30]  Rongling Wu,et al.  THE DETECTION OF PLASTICITY GENES IN HETEROGENEOUS ENVIRONMENTS , 1998, Evolution; international journal of organic evolution.

[31]  M. Pigliucci,et al.  Phenotypic Evolution: A Reaction Norm Perspective , 1998 .

[32]  M. Longair The Theoretical Framework , 1998 .

[33]  James H. Brown,et al.  The fourth dimension of life: fractal geometry and allometric scaling of organisms. , 1999, Science.

[34]  J. Cheverud,et al.  Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. , 1999, Genetical research.

[35]  J. Cheverud Genetics and analysis of quantitative traits , 1999 .

[36]  C. Geyer,et al.  The genetic analysis of age-dependent traits: modeling the character process. , 1999, Genetics.

[37]  D. Roff Phenotypic Evolution — A Reaction Norm Perspective , 1999, Heredity.

[38]  M. Wade,et al.  Epistasis and the Evolutionary Process , 2000 .

[39]  T. Mackay,et al.  Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. , 2000, Genetics.

[40]  J B Wolf GENE INTERACTIONS FROM MATERNAL EFFECTS , 2000, Evolution; international journal of organic evolution.

[41]  T. C. Nesbitt,et al.  fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. , 2000, Science.

[42]  S. Pletcher,et al.  Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. , 2000, Genetics.

[43]  Karin Meyer,et al.  Random regressions to model phenotypic variation in monthly weights of Australian beef cows , 2000 .

[44]  V. Ambros,et al.  Control of developmental timing in Caenorhabditis elegans. , 2000, Current opinion in genetics & development.

[45]  Rudolf A. Raff,et al.  Evo-devo: the evolution of a new discipline , 2000, Nature Reviews Genetics.

[46]  DEVELOPMENTAL INTERACTIONS AND THE CONSTITUENTS OF QUANTITATIVE VARIATION , 2001, Evolution; international journal of organic evolution.

[47]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[48]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[49]  Leena Peltonen,et al.  Dissecting Human Disease in the Postgenomic Era , 2001, Science.

[50]  Z B Zeng,et al.  Joint linkage and linkage disequilibrium mapping in natural populations. , 2001, Genetics.

[51]  R. Mauricio Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology , 2001, Nature Reviews Genetics.

[52]  Trudy F. C. Mackay,et al.  Quantitative trait loci in Drosophila , 2001, Nature Reviews Genetics.

[53]  A. Rougvie Control of developmental timing in animals , 2001, Nature Reviews Genetics.

[54]  Nicholas F Britton,et al.  Coexistence of sexual and asexual conspecifics: a cellular automaton model. , 2002, Journal of theoretical biology.

[55]  G. Casella,et al.  A statistical model for the genetic origin of allometric scaling laws in biology. , 2002, Journal of theoretical biology.

[56]  G. Casella,et al.  Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. , 2002, Genetics.

[57]  R. Mauricio Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana , 2005, Genetica.

[58]  G. Casella,et al.  Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. , 2002, Genetics.

[59]  W. Arthur,et al.  The emerging conceptual framework of evolutionary developmental biology , 2002, Nature.

[60]  Rongling Wu,et al.  A haplotype-based algorithm for multilocus linkage disequilibrium mapping of quantitative trait loci with epistasis. , 2003, Genetics.

[61]  Pier Paolo Delsanto,et al.  Does tumor growth follow a "universal law"? , 2003, Journal of theoretical biology.

[62]  MORPHOMETRIC HETEROCHRONY AND THE EVOLUTION OF GROWTH , 2003, Evolution; international journal of organic evolution.

[63]  T. Chapman,et al.  Response to Eberhard and Cordero, and Córdoba-Aguilar and Contreras-Garduño: sexual conflict and female choice , 2003 .

[64]  Bruce M Psaty,et al.  Genomics and Medicine: Distraction, Incremental Progress, or the Dawn of a New Age? , 2003, Annals of Internal Medicine.

[65]  R. Jain,et al.  Responses to antiangiogenesis treatment of spontaneous autochthonous tumors and their isografts. , 2003, Cancer research.

[66]  G. Casella,et al.  Molecular Dissection of Allometry, Ontogeny, and Plasticity: A Genomic View of Developmental Biology , 2003 .

[67]  Wei Zhao,et al.  Functional mapping for quantitative trait loci governing growth rates: a parametric model. , 2003, Physiological genomics.

[68]  Jason H. Moore,et al.  The Ubiquitous Nature of Epistasis in Determining Susceptibility to Common Human Diseases , 2003, Human Heredity.

[69]  P. Maini,et al.  Mathematical oncology: Cancer summed up , 2003, Nature.

[70]  J. Wall,et al.  Haplotype blocks and linkage disequilibrium in the human genome , 2003, Nature Reviews Genetics.

[71]  J. Cheverud,et al.  A Mechanistic Model for Genetic Machinery of Ontogenetic Growth , 2004, Genetics.

[72]  Wei Zhao,et al.  A Unified Statistical Model for Functional Mapping of Environment-Dependent Genetic Expression and Genotype × Environment Interactions for Ontogenetic Development , 2004, Genetics.

[73]  G. Casella,et al.  Sequencing Complex Diseases With HapMap , 2004, Genetics.

[74]  Leif Andersson,et al.  Domestic-animal genomics: deciphering the genetics of complex traits , 2004, Nature Reviews Genetics.

[75]  Wei Zhao,et al.  A unifying statistical model for QTL mapping of genotype x sex interaction for developmental trajectories. , 2004, Physiological genomics.

[76]  G. Casella,et al.  A General Framework for Analyzing the Genetic Architecture of Developmental Characteristics , 2004, Genetics.

[77]  R. Wu,et al.  A statistical model for functional mapping of quantitative trait loci regulating drug response , 2004, The Pharmacogenomics Journal.

[78]  D. Balding,et al.  Handbook of statistical genetics , 2004 .

[79]  T. Mackay,et al.  Quantitative genetic analyses of complex behaviours in Drosophila , 2004, Nature Reviews Genetics.

[80]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[81]  Chris S. Haley,et al.  Epistasis: too often neglected in complex trait studies? , 2004, Nature Reviews Genetics.

[82]  Rongling Wu,et al.  A statistical model for high‐resolution mapping of quantitative trait loci determining HIV dynamics , 2004, Statistics in medicine.

[83]  G. Casella,et al.  Functional Mapping of Quantitative Trait Loci Underlying Growth Trajectories Using a Transform‐Both‐Sides Logistic Model , 2004, Biometrics.

[84]  R. Mott,et al.  Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice , 2005, Genetics.

[85]  J. Johnson,et al.  Sequencing drug response with HapMap , 2005, The Pharmacogenomics Journal.

[86]  Peter M Visscher,et al.  Quantitative Trait Locus Analysis of Longitudinal Quantitative Trait Data in Complex Pedigrees , 2005, Genetics.

[87]  Wei Zhao,et al.  A non-stationary model for functional mapping of complex traits , 2005, Bioinform..

[88]  D. Hosken,et al.  Sexual conflict , 2005, Current Biology.

[89]  R. Wu,et al.  Theoretical Basis for the Identification of Allelic Variants That Encode Drug Efficacy and Toxicity , 2005, Genetics.

[90]  Rongling Wu,et al.  Functional Mapping of Quantitative Trait Loci That Interact With the hg Mutation to Regulate Growth Trajectories in Mice , 2005, Genetics.

[91]  Shizhong Xu,et al.  Bayesian Shrinkage Estimation of Quantitative Trait Loci Parameters , 2005, Genetics.

[92]  Shashi Shekhar,et al.  Parametric Model , 2008, Encyclopedia of GIS.