The wadge hierarchy of Petri Nets ω-languages
暂无分享,去创建一个
[1] Nivat G. Päun,et al. Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.
[2] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..
[3] Olivier Finkel. Highly Undecidable Problems For Infinite Computations , 2009, RAIRO Theor. Informatics Appl..
[4] Olivier Finkel,et al. An Effective Extension of the Wagner Hierarchy to Blind Counter Automata , 2001, CSL.
[5] Jacques Duparc,et al. A hierarchy of deterministic context-free omega-languages , 2003, Theor. Comput. Sci..
[6] Rina S. Cohen,et al. omega-Computations on Turing Machines , 1978, Theor. Comput. Sci..
[7] Thomas Wilke,et al. Computing the Wadge Degree, the Lifschitz Degree, and the Rabin Index of a Regular Language of Infinite Words in Polynomial Time , 1995, TAPSOFT.
[8] Joost Engelfriet,et al. X-Automata on omega-Words , 1993, Theor. Comput. Sci..
[9] Wolfgang Reisig,et al. Lectures on Concurrency and Petri Nets , 2003, Lecture Notes in Computer Science.
[10] A. Kechris. Classical descriptive set theory , 1987 .
[11] Olivier Carton,et al. Chains and Superchains for ω-Rational Sets, Automata and Semigroups , 1997, Int. J. Algebra Comput..
[12] Jacques Duparc. La forme normale des Boréliens de rang fini , 1995 .
[13] Olivier Finkel,et al. Wadge Degrees of Infinitary Rational Relations , 2008, Math. Comput. Sci..
[14] Olivier Finkel,et al. Topological properties of omega context-free languages , 2001, Theor. Comput. Sci..
[15] Olivier Finkel,et al. Wadge hierarchy of omega context-free languages , 2001, Theor. Comput. Sci..
[16] Jean-Eric Pin,et al. Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.
[17] Jeffrey D. Ullman,et al. Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.
[18] Victor L. Selivanov,et al. Wadge Reducibility and Infinite Computations , 2008, Math. Comput. Sci..
[19] Javier Esparza,et al. Decidability and Complexity of Petri Net Problems - An Introduction , 1996, Petri Nets.
[20] Victor L. Selivanov,et al. Fine Hierarchy of Regular Aperiodic omega-Languages , 2008, Int. J. Found. Comput. Sci..
[21] Victor L. Selivanov. Fine Hierarchy of Regular omega-Languages , 1995, TAPSOFT.
[22] Olivier Finkel. Borel Ranks and Wadge Degrees of Context Free omega-Languages , 2005, CiE.
[23] Olivier Finkel,et al. The Wadge Hierarchy of Petri Nets omega-Languages , 2016 .
[24] Olivier Finkel,et al. Topological Complexity of Context-Free ω-Languages: A Survey , 2008, Language, Culture, Computation.
[25] Y. Moschovakis. Descriptive Set Theory , 1980 .
[26] Serge Haddad. Decidability and Complexity of Petri Net Problems , 2010 .
[27] Olivier Finkel,et al. Computer science and the fine structure of Borel sets , 2001, Theor. Comput. Sci..
[28] Ludwig Staiger,et al. Ω-languages , 1997 .
[29] Rüdiger Valk. Infinite Behaviour of Petri Nets , 1983, Theor. Comput. Sci..
[30] Henning Fernau,et al. Blind Counter Automata on ω-Words , 2008 .
[31] Jacques Duparc,et al. Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.
[32] Heino Carstensen. Infinite Behaviour if Deterministic Petri Nets , 1988, MFCS.
[33] Olivier Carton,et al. The Wagner Hierarchy , 1999, Int. J. Algebra Comput..
[34] Lawrence H. Landweber,et al. Decision problems forω-automata , 1969, Mathematical systems theory.
[35] Sheila A. Greibach. Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..
[36] Wolfgang Thomas,et al. Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .
[37] Michal Skrzypczak,et al. On the topological complexity of ω-languages of non-deterministic Petri nets , 2014, Inf. Process. Lett..
[38] Ludwig Staiger,et al. Rekursive Folgenmengen I , 1978, Math. Log. Q..
[39] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[40] Olivier Finkel,et al. The wadge hierarchy of Petri Nets ω-languages , 2014, Logic, Computation, Hierarchies.
[41] Victor L. Selivanov,et al. Wadge degrees of ω-languages of deterministic Turing machines , 2003 .
[42] Pierre Simonnet. Automates et theorie descriptive , 1992 .
[43] Wolfgang Thomas,et al. Logical Specifications of Infinite Computations , 1993, REX School/Symposium.
[44] L. Staiger. Research in the theory of Ω-languages , 1987 .
[45] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[46] Olivier Finkel,et al. Topological Complexity of Context-Free ω-Languages: A Survey , 2008, Language, Culture, Computation.
[47] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[48] Ludwig Staiger,et al. Hierarchies of Recursive omega-languages , 1986, J. Inf. Process. Cybern..
[49] Victor L. Selivanov,et al. Fine hierarchies and m-reducibilities in theoretical computer science , 2008, Theor. Comput. Sci..
[50] W. Browder,et al. Annals of Mathematics , 1889 .
[51] Olivier Finkel,et al. The Complexity of Infinite Computations In Models of Set Theory , 2009, Log. Methods Comput. Sci..
[52] M. W. Shields. An Introduction to Automata Theory , 1988 .
[53] Olivier Finkel,et al. Borel hierarchy and omega context free languages , 2003, Theor. Comput. Sci..
[54] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[55] Wacław Sierpiński,et al. Cardinal and Ordinal Numbers , 1966 .