The wadge hierarchy of Petri Nets ω-languages

We describe the Wadge hierarchy of the ω-languages recognized by deterministic Petri nets. This is an extension of the celebrated Wagner hierarchy which turned out to be the Wadge hierarchy of the ω-regular languages. Petri nets are an improvement of automata. They may be defined as partially blind multi-counter automata. We show that the whole hierarchy has height \(\omega^{\omega^2}\), and give a description of the restrictions of this hierarchy to every fixed number of partially blind counters.

[1]  Nivat G. Päun,et al.  Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.

[2]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[3]  Olivier Finkel Highly Undecidable Problems For Infinite Computations , 2009, RAIRO Theor. Informatics Appl..

[4]  Olivier Finkel,et al.  An Effective Extension of the Wagner Hierarchy to Blind Counter Automata , 2001, CSL.

[5]  Jacques Duparc,et al.  A hierarchy of deterministic context-free omega-languages , 2003, Theor. Comput. Sci..

[6]  Rina S. Cohen,et al.  omega-Computations on Turing Machines , 1978, Theor. Comput. Sci..

[7]  Thomas Wilke,et al.  Computing the Wadge Degree, the Lifschitz Degree, and the Rabin Index of a Regular Language of Infinite Words in Polynomial Time , 1995, TAPSOFT.

[8]  Joost Engelfriet,et al.  X-Automata on omega-Words , 1993, Theor. Comput. Sci..

[9]  Wolfgang Reisig,et al.  Lectures on Concurrency and Petri Nets , 2003, Lecture Notes in Computer Science.

[10]  A. Kechris Classical descriptive set theory , 1987 .

[11]  Olivier Carton,et al.  Chains and Superchains for ω-Rational Sets, Automata and Semigroups , 1997, Int. J. Algebra Comput..

[12]  Jacques Duparc La forme normale des Boréliens de rang fini , 1995 .

[13]  Olivier Finkel,et al.  Wadge Degrees of Infinitary Rational Relations , 2008, Math. Comput. Sci..

[14]  Olivier Finkel,et al.  Topological properties of omega context-free languages , 2001, Theor. Comput. Sci..

[15]  Olivier Finkel,et al.  Wadge hierarchy of omega context-free languages , 2001, Theor. Comput. Sci..

[16]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[17]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[18]  Victor L. Selivanov,et al.  Wadge Reducibility and Infinite Computations , 2008, Math. Comput. Sci..

[19]  Javier Esparza,et al.  Decidability and Complexity of Petri Net Problems - An Introduction , 1996, Petri Nets.

[20]  Victor L. Selivanov,et al.  Fine Hierarchy of Regular Aperiodic omega-Languages , 2008, Int. J. Found. Comput. Sci..

[21]  Victor L. Selivanov Fine Hierarchy of Regular omega-Languages , 1995, TAPSOFT.

[22]  Olivier Finkel Borel Ranks and Wadge Degrees of Context Free omega-Languages , 2005, CiE.

[23]  Olivier Finkel,et al.  The Wadge Hierarchy of Petri Nets omega-Languages , 2016 .

[24]  Olivier Finkel,et al.  Topological Complexity of Context-Free ω-Languages: A Survey , 2008, Language, Culture, Computation.

[25]  Y. Moschovakis Descriptive Set Theory , 1980 .

[26]  Serge Haddad Decidability and Complexity of Petri Net Problems , 2010 .

[27]  Olivier Finkel,et al.  Computer science and the fine structure of Borel sets , 2001, Theor. Comput. Sci..

[28]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[29]  Rüdiger Valk Infinite Behaviour of Petri Nets , 1983, Theor. Comput. Sci..

[30]  Henning Fernau,et al.  Blind Counter Automata on ω-Words , 2008 .

[31]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[32]  Heino Carstensen Infinite Behaviour if Deterministic Petri Nets , 1988, MFCS.

[33]  Olivier Carton,et al.  The Wagner Hierarchy , 1999, Int. J. Algebra Comput..

[34]  Lawrence H. Landweber,et al.  Decision problems forω-automata , 1969, Mathematical systems theory.

[35]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[36]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[37]  Michal Skrzypczak,et al.  On the topological complexity of ω-languages of non-deterministic Petri nets , 2014, Inf. Process. Lett..

[38]  Ludwig Staiger,et al.  Rekursive Folgenmengen I , 1978, Math. Log. Q..

[39]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[40]  Olivier Finkel,et al.  The wadge hierarchy of Petri Nets ω-languages , 2014, Logic, Computation, Hierarchies.

[41]  Victor L. Selivanov,et al.  Wadge degrees of ω-languages of deterministic Turing machines , 2003 .

[42]  Pierre Simonnet Automates et theorie descriptive , 1992 .

[43]  Wolfgang Thomas,et al.  Logical Specifications of Infinite Computations , 1993, REX School/Symposium.

[44]  L. Staiger Research in the theory of Ω-languages , 1987 .

[45]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[46]  Olivier Finkel,et al.  Topological Complexity of Context-Free ω-Languages: A Survey , 2008, Language, Culture, Computation.

[47]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[48]  Ludwig Staiger,et al.  Hierarchies of Recursive omega-languages , 1986, J. Inf. Process. Cybern..

[49]  Victor L. Selivanov,et al.  Fine hierarchies and m-reducibilities in theoretical computer science , 2008, Theor. Comput. Sci..

[50]  W. Browder,et al.  Annals of Mathematics , 1889 .

[51]  Olivier Finkel,et al.  The Complexity of Infinite Computations In Models of Set Theory , 2009, Log. Methods Comput. Sci..

[52]  M. W. Shields An Introduction to Automata Theory , 1988 .

[53]  Olivier Finkel,et al.  Borel hierarchy and omega context free languages , 2003, Theor. Comput. Sci..

[54]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[55]  Wacław Sierpiński,et al.  Cardinal and Ordinal Numbers , 1966 .