The ERA5 global reanalysis

Within the Copernicus Climate Change Service (C3S), ECMWF is producing the ERA5 reanalysis which, once completed, will embody a detailed record of the global atmosphere, land surface and ocean waves from 1950 onwards. This new reanalysis replaces the ERA‐Interim reanalysis (spanning 1979 onwards) which was started in 2006. ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2 which was operational in 2016. ERA5 thus benefits from a decade of developments in model physics, core dynamics and data assimilation. In addition to a significantly enhanced horizontal resolution of 31 km, compared to 80 km for ERA‐Interim, ERA5 has hourly output throughout, and an uncertainty estimate from an ensemble (3‐hourly at half the horizontal resolution). This paper describes the general set‐up of ERA5, as well as a basic evaluation of characteristics and performance, with a focus on the dataset from 1979 onwards which is currently publicly available. Re‐forecasts from ERA5 analyses show a gain of up to one day in skill with respect to ERA‐Interim. Comparison with radiosonde and PILOT data prior to assimilation shows an improved fit for temperature, wind and humidity in the troposphere, but not the stratosphere. A comparison with independent buoy data shows a much improved fit for ocean wave height. The uncertainty estimate reflects the evolution of the observing systems used in ERA5. The enhanced temporal and spatial resolution allows for a detailed evolution of weather systems. For precipitation, global‐mean correlation with monthly‐mean GPCP data is increased from 67% to 77%. In general, low‐frequency variability is found to be well represented and from 10 hPa downwards general patterns of anomalies in temperature match those from the ERA‐Interim, MERRA‐2 and JRA‐55 reanalyses.

[1]  S. Healy,et al.  Towards an unbiased stratospheric analysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[2]  L. Haimberger,et al.  An Improved Estimate of the Coupled Arctic Energy Budget , 2019, Journal of Climate.

[3]  Denie C. M. Augustijn,et al.  Supplementary material to "Validation of SMAP L2 passive-only soil moisture products using in situ measurements collected in Twente, The Netherlands" , 2019 .

[4]  Caio A. S. Coelho,et al.  Drought:Monitoring global drought using the self-calibrating Palmer Drought Severity Index , 2019 .

[5]  E. Sudicky,et al.  Evaluation of variability among different precipitation products in the Northern Great Plains , 2019, Journal of Hydrology: Regional Studies.

[6]  F. Brissette,et al.  Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modeling over North-America , 2019 .

[7]  C. Allen,et al.  A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies , 2019, Geosciences.

[8]  Robert M. Graham,et al.  Improved Performance of ERA5 in Arctic Gateway Relative to Four Global Atmospheric Reanalyses , 2019, Geophysical Research Letters.

[9]  A. Holtslag,et al.  Low-level jets over the North Sea based on ERA5 and observations: together they do better , 2019, Wind Energy Science.

[10]  Ad Stoffelen,et al.  Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT , 2019, Ocean Science.

[11]  Henk Eskes,et al.  The CAMS reanalysis of atmospheric composition , 2018, Atmospheric Chemistry and Physics.

[12]  N. Harris,et al.  Is global ozone recovering? , 2018, Comptes Rendus Geoscience.

[13]  Jon Olauson ERA5: The new champion of wind power modelling? , 2018, Renewable Energy.

[14]  S. Dhomse,et al.  Revisiting the Mystery of Recent Stratospheric Temperature Trends , 2018, Geophysical research letters.

[15]  L. Wald,et al.  Downwelling surface solar irradiance in the tropical Atlantic Ocean: a comparison of re-analyses and satellite-derived data sets to PIRATA measurements , 2018, Ocean Science.

[16]  Niels Bormann,et al.  An update on the RTTOV fast radiative transfer model (currently at version 12) , 2018, Geoscientific Model Development.

[17]  T. Shepherd,et al.  Report on Stratosphere Task Force , 2018 .

[18]  Qifeng Lu,et al.  Evaluation and Assimilation of the Microwave Sounder MWHS-2 Onboard FY-3C in the ECMWF Numerical Weather Prediction System , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[19]  R. Buizza,et al.  CERA‐20C: A Coupled Reanalysis of the Twentieth Century , 2018 .

[20]  Ana M. Gracia-Amillo,et al.  Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data , 2018 .

[21]  C. Long,et al.  Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP) , 2017 .

[22]  N. Bormann,et al.  The growing impact of satellite observations sensitive to humidity, cloud and precipitation , 2017 .

[23]  Niels Bormann,et al.  The assimilation of Cross‐track Infrared Sounder radiances at ECMWF , 2017 .

[24]  Stephen G. Penny,et al.  Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations , 2017 .

[25]  Simon T. K. Lang,et al.  Stochastic representations of model uncertainties at ECMWF: state of the art and future vision , 2017 .

[26]  William M. Putman,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[27]  D. Dee,et al.  The potential value of early (1939–1967) upper‐air data in atmospheric climate reanalysis , 2017 .

[28]  Susann Tegtmeier,et al.  Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. , 2017, Atmospheric chemistry and physics.

[29]  Weiqing Qu,et al.  Progress toward High-Resolution, Real-Time Radiosonde Reports , 2016 .

[30]  Angela Benedetti,et al.  The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015 , 2016 .

[31]  Michail Diamantakis,et al.  Sensitivity of the ECMWF Model to Semi-Lagrangian Departure Point Iterations , 2016 .

[32]  R. Dragani A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation , 2016 .

[33]  Bernard Pinty,et al.  The Copernicus Programme and its Climate Change Service , 2016, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[34]  Haifeng Qian,et al.  Stratospheric Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER Satellite Observations , 2016 .

[35]  J. Thepaut,et al.  ERA-20C: An Atmospheric Reanalysis of the Twentieth Century , 2016 .

[36]  N. Bormann,et al.  Enhancing the impact of IASI observations through an updated observation‐error covariance matrix , 2016 .

[37]  Ricardo Todling,et al.  Maintaining atmospheric mass and water balance in reanalyses , 2016, Quarterly journal of the Royal Meteorological Society. Royal Meteorological Society.

[38]  R. Hogan,et al.  Effect of solar zenith angle specification in models on mean shortwave fluxes and stratospheric temperatures , 2016 .

[39]  Jiang Zhu,et al.  Assessment ofFY-3AandFY-3BMWHS Observations , 2015 .

[40]  T. Hewson,et al.  Cyclones, windstorms and the IMILAST project , 2015 .

[41]  A. Geer,et al.  Effects of all‐sky assimilation of GCOM‐W/AMSR2 radiances in the ECMWF numerical weather prediction system , 2015 .

[42]  Thomas A. Cram,et al.  The International Surface Pressure Databank version 2 , 2015 .

[43]  Christina Tavolato,et al.  On the use of a Huber norm for observation quality control in the ECMWF 4D‐Var , 2015 .

[44]  R. Saunders,et al.  A review of Stratospheric Sounding Unit radiance observations for climate trends and reanalyses , 2015 .

[45]  Sylvie Malardel,et al.  An alternative cell‐averaged departure point reconstruction for pointwise semi‐Lagrangian transport schemes , 2015 .

[46]  D. Dee,et al.  ERA‐20CM: a twentieth‐century atmospheric model ensemble , 2015 .

[47]  Robin J. Hogan,et al.  Mitigating errors in surface temperature forecasts using approximate radiation updates , 2015 .

[48]  F. Pappenberger,et al.  ERA-Interim/Land: a global land surface reanalysis data set , 2015 .

[49]  Claire E. Bulgin,et al.  Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI) , 2014 .

[50]  A. Simmons,et al.  The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .

[51]  Richard G. Forbes,et al.  On the Representation of High-Latitude Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model , 2014 .

[52]  K. Cowtan,et al.  Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends , 2014 .

[53]  Richard P Allan,et al.  Changes in global net radiative imbalance 1985–2012 , 2014, Geophysical research letters.

[54]  Lars Isaksen,et al.  Initialisation of Land Surface Variables for Numerical Weather Prediction , 2014, Surveys in Geophysics.

[55]  Kevin E. Trenberth,et al.  Earth’s Energy Imbalance , 2014 .

[56]  Nick Rayner,et al.  The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations , 2014 .

[57]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[58]  Niels Bormann,et al.  Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models , 2014 .

[59]  Richard G. Forbes,et al.  Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores , 2014 .

[60]  Niels Bormann,et al.  Evaluation and assimilation of ATMS data in the ECMWF system , 2013 .

[61]  R. Dragani,et al.  Operational assimilation of ozone‐sensitive infrared radiances at ECMWF , 2013 .

[62]  Lawrence E. Flynn,et al.  The version 8.6 SBUV ozone data record: An overview , 2013 .

[63]  P. Bechtold,et al.  Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process‐based diagnostics , 2013 .

[64]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[65]  L. Isaksen,et al.  A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF , 2013 .

[66]  Ivan Mammarella,et al.  Representing Land Surface Heterogeneity: Offline Analysis of the Tiling Method , 2013 .

[67]  P. Bechtold,et al.  Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? , 2013 .

[68]  Lionel Jarlan,et al.  Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model , 2013 .

[69]  Leopold Haimberger,et al.  Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations , 2012 .

[70]  Gianpaolo Balsamo,et al.  A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data , 2012 .

[71]  U. Schneider,et al.  A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present , 2012 .

[72]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[73]  Jean-Noël Thépaut,et al.  The MACC reanalysis: an 8 yr data set of atmospheric composition , 2012 .

[74]  Miguel Potes,et al.  On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model , 2012 .

[75]  L. Haimberger,et al.  Poleward Atmospheric Energy Transports and Their Variability as Evaluated from ECMWF Reanalysis Data , 2012 .

[76]  C. Donlon,et al.  The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system , 2012 .

[77]  Paul Poli,et al.  Atmospheric conservation properties in ERA‐Interim , 2011 .

[78]  Philippe Lopez,et al.  Direct 4D-Var Assimilation of NCEP Stage IV Radar and Gauge Precipitation Data at ECMWF , 2011 .

[79]  Elizabeth C. Kent,et al.  ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive , 2011 .

[80]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[81]  S. B. Healy,et al.  Refractivity coefficients used in the assimilation of GPS radio occultation measurements , 2011 .

[82]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[83]  P. Bechtold,et al.  Improved Middle Atmosphere Climate and Forecasts in the ECMWF Model through a Nonorographic Gravity Wave Drag Parameterization , 2010 .

[84]  S. Wijffels,et al.  Fifty-Year Trends in Global Ocean Salinities and Their Relationship to Broad-Scale Warming , 2010 .

[85]  Kelly Elder,et al.  An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation , 2010 .

[86]  H. Hersbach Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF , 2010 .

[87]  Peter Bauer,et al.  Solar Biases in Microwave Imager Observations Assimilated at ECMWF , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[88]  Dick Dee,et al.  Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets , 2010 .

[89]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[90]  D. Dee,et al.  Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU‐A , 2009 .

[91]  A. Mcnally,et al.  Characterization of the impact of geostationary clear‐sky radiances on wind analyses in a 4D‐Var context , 2009 .

[92]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[93]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[94]  A. Mcnally,et al.  The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF , 2009 .

[95]  K. Trenberth,et al.  Earth's Global Energy Budget , 2009 .

[96]  Paul Poli,et al.  Quality Control, Error Analysis, and Impact Assessment of FORMOSAT-3/COS MIC in Numerical Weather Prediction , 2009 .

[97]  J. Morcrette,et al.  Impact of a New Radiation Package, McRad, in the ECMWF Integrated Forecasting System , 2008 .

[98]  Leopold Haimberger,et al.  Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records—Some New Results from a Comprehensive Intercomparison of Upper-Air Data , 2008 .

[99]  David L. T. Anderson,et al.  The ECMWF Ocean Analysis System: ORA-S3 , 2008 .

[100]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[101]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[102]  John J. Barnett,et al.  Temperature trends derived from Stratospheric Sounding Unit radiances: The effect of increasing CO2 on the weighting function , 2008 .

[103]  Mats Hamrud,et al.  Assimilating GPS radio occultation measurements with two‐dimensional bending angle observation operators , 2007 .

[104]  Dick Dee,et al.  Adaptive bias correction for satellite data in a numerical weather prediction system , 2007 .

[105]  J. Thepaut,et al.  The assimilation of AIRS radiance data at ECMWF , 2006 .

[106]  Jeffrey S. Whitaker,et al.  Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data , 2006 .

[107]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[108]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[109]  Greg Kopp,et al.  SORCE Contributions to New Understanding of Global Change and Solar Variability , 2005 .

[110]  Kevin E. Trenberth,et al.  The Mass of the Atmosphere: A Constraint on Global Analyses , 2005 .

[111]  S. Uppala,et al.  ECMWF Analyses and Forecasts of Stratospheric Winter Polar Vortex Breakup: September 2002 in the Southern Hemisphere and Related Events , 2005 .

[112]  Erik Andersson,et al.  Influence‐matrix diagnostic of a data assimilation system , 2004 .

[113]  Jean-Noël Thépaut,et al.  Assimilation of Meteosat radiance data within the 4D‐Var system at ECMWF: Data quality monitoring, bias correction and single‐cycle experiments , 2004 .

[114]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[115]  A. Mcnally,et al.  A cloud detection algorithm for high‐spectral‐resolution infrared sounders , 2003 .

[116]  J. Morcrette,et al.  A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields , 2003 .

[117]  Jean-Noël Thépaut,et al.  Impact of the Digital Filter as a Weak Constraint in the Preoperational 4DVAR Assimilation System of Météo-France , 2001 .

[118]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[119]  David L. T. Anderson,et al.  Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4 , 1997 .

[120]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[121]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[122]  J. Morcrette Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system , 1991 .

[123]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[124]  Daniel Cariolle,et al.  Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model , 1986 .

[125]  M. Balmaseda,et al.  823 OCEAN 5 : the ECMWF Ocean Reanalysis System and its Real-Time analysis component , 2018 .

[126]  A. Simmons,et al.  Operational global reanalysis : progress , future directions and synergies with NWP , 2018 .

[127]  C. Lupu,et al.  CERA-SAT: A coupled satellite-era reanalysis , 2018 .

[128]  J. Thepaut,et al.  A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets , 2017 .

[129]  N. Bormann,et al.  Assessment of the forecast impact of surface-sensitive microwave radiances over land and sea-ice , 2017 .

[130]  Mark Buehner,et al.  Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations , 2017 .

[131]  Massimo Bonavita,et al.  The evolution of the ECMWF hybrid data assimilation system , 2016 .

[132]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[133]  A. Geer,et al.  748 Operational implementation of RTTOV-11 in the IFS , 2015 .

[134]  Paul Poli,et al.  Estimating low‐frequency variability and trends in atmospheric temperature using ERA‐Interim , 2014 .

[135]  M. Diamantakis Improving ECMWF forecasts of sudden stratospheric warmings , 2014 .

[136]  Jiang Zhu,et al.  Assessment of FY-3A and FY-3B MWHS Observations , 2014 .

[137]  Philippe Lopez,et al.  Linearized Physics for Data Assimilation at ECMWF , 2013 .

[138]  Adrian M. Tompkins,et al.  649 A new prognostic bulk microphysics scheme for the IFS , 2012 .

[139]  C. Lupu,et al.  Assimilation of cloud-affected radiances from Meteosat-9 at ECMWF , 2012 .

[140]  Roberto Buizza,et al.  The new ECMWF seasonal forecast system (system 4) , 2011 .

[141]  E. Heise,et al.  Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO , 2010 .

[142]  M. Gebremichael,et al.  Satellite rainfall applications for surface hydrology , 2010 .

[143]  G. Huffman,et al.  The TRMM Multi-Satellite Precipitation Analysis (TMPA) , 2010 .

[144]  M. Bosilovich,et al.  Modern Era Retrospective-Analysis for Research and Applications , 2009 .

[145]  Peter A. E. M. Janssen,et al.  On the extension of the freak wave warning system and its verification , 2009 .

[146]  P. Bauer,et al.  Estimates of spatial and inter-channel observation error characteristics for current sounder radiances for NWP , 2009 .

[147]  © Author(s) 2007. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2007 .

[148]  M. Fisher,et al.  Background Error Covariance Modelling , 2003 .

[149]  Heini Wernli,et al.  Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999) , 2002 .

[150]  Heikki Järvinen,et al.  Variational quality control , 1999 .

[151]  L. Bengtsson,et al.  FGGE 4-dimensional Data Assimilation at ECMWF , 1982 .