h-Multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

Being implicit in time, the space-time discontinuous Galerkin discretization of the compressible Navier-Stokes equations requires the solution of a non-linear system of algebraic equations at each time-step. The overall performance, therefore, highly depends on the efficiency of the solver. In this article, we solve the system of algebraic equations with a h-multigrid method using explicit Runge-Kutta relaxation. Two-level Fourier analysis of this method for the scalar advection-diffusion equation shows convergence factors between 0.5 and 0.75. This motivates its application to the 3D compressible Navier-Stokes equations where numerical experiments show that the computational effort is significantly reduced, up to a factor 10 w.r.t. single-grid iterations.

[1]  J Vandervegt,et al.  Space–Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible FlowsI. General Formulation , 2002 .

[2]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[3]  Pieter W. Hemker,et al.  Two-level multigrid analysis for the convection-diffusion equation discretized by a discontinuous Galerkin method , 2005, Numer. Linear Algebra Appl..

[4]  Mark D. Sanetrik,et al.  Time-accurate Navier-Stokes calculations with multigrid acceleration , 1993 .

[5]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[6]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[7]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[8]  van Marc Raalte Multigrid analysis and embedded boundary conditions for discontinuous Galerkin discretization , 2004 .

[9]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[10]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[11]  O. J. Boelens,et al.  Multitlme multlgrid convergence acceleration for periodic problems with future applications to rotor simulations , 2001 .

[12]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .

[13]  Jaap J. W. van der Vegt,et al.  Pseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2006, J. Comput. Phys..

[15]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[16]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[17]  D. Kwak,et al.  A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems , 1991 .

[18]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[19]  P. Wesseling A robust and efficient multigrid method , 1982 .

[20]  Pieter W. Hemker,et al.  Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..

[21]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[22]  Pieter W. Hemker,et al.  Fourier two‐level analysis for discontinuous Galerkin discretization with linear elements , 2004, Numer. Linear Algebra Appl..

[23]  J. V. D. Vegt,et al.  Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains , 2006 .

[24]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[25]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[26]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[27]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[28]  M. H. van Raalte,et al.  Fourier Two-level Analysis for Discontinuous Galerkin Discretizatiom of the Convection-Diffusion Equation , 2004 .