First-principle investigation of CO, CH4, and CO2 adsorption on Cr-doped graphene-like hexagonal borophene

[1]  E. García-Hernández,et al.  Theoretical analysis of the uptake of CO, CO2, and NfO2 on pristine and BN-doped carbon nanocones , 2022, Chemical Physics Letters.

[2]  Fusheng Zhang,et al.  PbSnS₂-Based Gas Sensor to Detect SF₆ Decompositions: DFT and NEGF Calculations , 2021, IEEE Transactions on Electron Devices.

[3]  L. A. Pérez,et al.  CO and CO2 adsorption performance of transition metal-functionalized germanene , 2021 .

[4]  F. Opoku,et al.  Defect-engineered two-dimensional layered gallium sulphide molecular gas sensors with ultrahigh selectivity and sensitivity , 2021 .

[5]  L. A. Pérez,et al.  Gas adsorption enhancement on transition-metal-decorated tin carbide monolayers , 2021 .

[6]  P. Gajjar,et al.  Highly Selective and Reversible 2D PtX2 (X=P, As) Hazardous Gas Sensors: Ab-initio Study , 2021 .

[7]  Jia-Hui Li,et al.  DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and I-V responses , 2021 .

[8]  J. Hou,et al.  A first-principle study of FeB6 monolayer as a potential anode material for Li-ion and Na-ion batteries , 2021 .

[9]  C. Liao,et al.  Tellurene based biosensor for detecting DNA/RNA nucleobases and amino acids: A theoretical insight , 2020 .

[10]  Fusheng Zhang,et al.  High sensitivity gas sensor to detect SF6 decomposition components based on monolayer antimonide phosphorus , 2020 .

[11]  Raghu Chatanathodi,et al.  Stabilizing honeycomb borophene by metal decoration: a computational study , 2019, Journal of Materials Chemistry C.

[12]  Xiaohong Li,et al.  C2N monolayer as NH3 and NO sensors: A DFT study , 2019, Applied Surface Science.

[13]  Liyan Zhu,et al.  How is Honeycomb Borophene Stabilized on Al(111)? , 2019, The Journal of Physical Chemistry C.

[14]  Z. Shao,et al.  First-principle investigation of CO and CO2 adsorption on Fe-doped penta-graphene , 2019, Applied Surface Science.

[15]  F. de Santiago,et al.  Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires , 2018, Nanotechnology.

[16]  Rajesh Kumar,et al.  Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications , 2018 .

[17]  V. Nagarajan,et al.  Investigation on adsorption properties of CO and NO gas molecules on aluminene nanosheet: A density functional application , 2018 .

[18]  Tingting Liu,et al.  A first-principles study of gas molecule adsorption on borophene , 2017 .

[19]  Su-Huai Wei,et al.  Gas sensing in 2D materials , 2017 .

[20]  A. Shokri,et al.  Gas sensor based on MoS2 monolayer , 2016 .

[21]  T. Cui,et al.  Investigating Robust Honeycomb Borophenes Sandwiching Manganese Layers in Manganese Diboride. , 2016, Inorganic chemistry.

[22]  Cheng-Cheng Liu,et al.  Rise of silicene: A competitive 2D material , 2016 .

[23]  M. Noei DFT study on the sensitivity of open edge graphene toward CO2 gas , 2016 .

[24]  A. Ayesh,et al.  Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film , 2016 .

[25]  Artem R. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[26]  A. Oganov,et al.  Two-dimensional magnetic boron , 2015, 1512.05790.

[27]  R. Ahuja,et al.  Highly Sensitive and Selective Gas Detection Based on Silicene , 2015 .

[28]  Y. Shimizu,et al.  CO-sensing properties of a NASICON-based gas sensor attached with Pt mixed with Bi2O3 as a sensing electrode , 2015 .

[29]  T. Frauenheim,et al.  Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response. , 2014, The journal of physical chemistry letters.

[30]  S. Curtarolo,et al.  Pressure effects on the electronic structure and superconducting critical temperature of Li2B2 , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[32]  Z. Yin,et al.  A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes , 2012, Nanotechnology.

[33]  Lizhi Zhang,et al.  Boron Sheet Adsorbed on Metal Surfaces: Structures and Electronic Properties , 2012 .

[34]  Wencai Lu,et al.  Metals on graphene: correlation between adatom adsorption behavior and growth morphology. , 2012, Physical chemistry chemical physics : PCCP.

[35]  Cheng-Cheng Liu,et al.  Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin , 2011, 1108.2933.

[36]  Yan Zhang,et al.  The experimental observation of quantum Hall effect of lD3 chiral quasiparticles in trilayer graphene , 2011, 1103.6023.

[37]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[38]  Jianmin Yuan,et al.  Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study , 2009 .

[39]  G. Gunkel,et al.  Hydropower – A Green Energy? Tropical Reservoirs and Greenhouse Gas Emissions , 2009 .

[40]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[41]  Ravindra Pandey,et al.  Stability and Electronic Properties of Atomistically-Engineered 2D Boron Sheets , 2007 .

[42]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[43]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[44]  J. Kunstmann,et al.  Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties , 2005, cond-mat/0509455.

[45]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[46]  J. Joannopoulos,et al.  Electronic and mechanical properties of planar and tubular boron structures , 2005 .

[47]  G. Henkelman,et al.  Comparison of methods for finding saddle points without knowledge of the final states. , 2004, The Journal of chemical physics.

[48]  Hongjie Dai,et al.  Ab initio study of CNT NO2 gas sensor , 2004 .

[49]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[50]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[51]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[52]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Baerends,et al.  Cohesive energy of 3d transition metals: Density functional theory atomic and bulk calculations. , 1996, Physical review. B, Condensed matter.

[55]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[56]  P. M. Horn,et al.  Low-frequency fluctuations in solids: 1/f noise , 1981 .

[57]  W. Kohn,et al.  Theory of Metal Surfaces: Work Function , 1971 .

[58]  M. Cadeville Proprietes magnetiques des diborures de manganese et de chrome: MnB2 et CrB2 , 1965 .

[59]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .