Nanowires for energy generation

As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators.

[1]  Rasit Turan,et al.  Silicon nanowire - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) heterojunction solar cells , 2011 .

[2]  Jinyao Tang,et al.  Solution-processed core-shell nanowires for efficient photovoltaic cells. , 2011, Nature nanotechnology.

[3]  Gehan A. J. Amaratunga,et al.  Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron , 2011 .

[4]  D. Poulikakos,et al.  Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. , 2011, Nano letters.

[5]  V. Bulović,et al.  Heterojunction photovoltaics using GaAs nanowires and conjugated polymers. , 2011, Nano letters.

[6]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[7]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[8]  Hidetoshi Matsumoto,et al.  Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(vinyl butyral) and Electrolytes , 2009 .

[9]  Zhiyong Fan,et al.  Challenges and prospects of nanopillar-based solar cells , 2009 .

[10]  Seeram Ramakrishna,et al.  Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires , 2009 .

[11]  Yang Yang,et al.  Arrays of Parallel Connected Coaxial Multiwall‐Carbon‐ Nanotube–Amorphous‐Silicon Solar Cells , 2009 .

[12]  Wei Lu,et al.  Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. , 2009, Nano letters.

[13]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[14]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[15]  Thomas M. Higgins,et al.  Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. , 2009, ACS nano.

[16]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[17]  Lei Zhang,et al.  Photonic crystal geometry for organic solar cells. , 2009, Nano letters.

[18]  Qibing Pei,et al.  Highly stretchable, conductive, and transparent nanotube thin films , 2009 .

[19]  C. Brabec,et al.  Solar Power Wires Based on Organic Photovoltaic Materials , 2009, Science.

[20]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[21]  Kijung Yong,et al.  Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array , 2009 .

[22]  Chin-Jung Lin,et al.  Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting , 2009 .

[23]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[24]  Wilson A. Smith,et al.  Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. , 2009, Small.

[25]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2009, Nature.

[26]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[27]  K. Musselman,et al.  Low‐Temperature Synthesis of Large‐Area, Free‐Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates , 2008 .

[28]  Gehan A. J. Amaratunga,et al.  Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films , 2008 .

[29]  Peng Jiang,et al.  Bioinspired Self‐Cleaning Antireflection Coatings , 2008 .

[30]  H. E. Unalan,et al.  Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers , 2008 .

[31]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[32]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[33]  Zhong Lin Wang Energy harvesting for self-powered nanosystems , 2008 .

[34]  W. Vervisch,et al.  Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells , 2008 .

[35]  C. Honsberg,et al.  Silicon multiple exciton generation/pn junction hybrid solar cell , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[36]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[37]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[38]  Guo-Qiang Lo,et al.  High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode , 2008 .

[39]  J. Turner,et al.  Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films , 2008 .

[40]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[41]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[42]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[43]  A. Javey,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2007, Nano letters.

[44]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[45]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[46]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[47]  Sean E. Shaheen,et al.  Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices , 2007 .

[48]  Flora M. Li,et al.  Ink-jet printing of carbon nanotube thin film transistors , 2007 .

[49]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[50]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[51]  Subodh G. Mhaisalkar,et al.  Bifunctional carbon nanotube networks for supercapacitors , 2007 .

[52]  Guo-Qiang Lo,et al.  Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode , 2007 .

[53]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[54]  Giovanni Fanchini,et al.  Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization , 2007 .

[55]  R. Rudd,et al.  First-principles calculation of mechanical properties of Si nanowires and comparison to nanomechanical theory , 2007, cond-mat/0702531.

[56]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[57]  Zhong Lin Wang Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators , 2007 .

[58]  A. Marini,et al.  From Si nanowires to porous silicon: the role of excitonic effects. , 2007, Physical review letters.

[59]  Young Joon Hong,et al.  Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method , 2006 .

[60]  Michael D. McGehee,et al.  Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors , 2006 .

[61]  M. Chhowalla,et al.  Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films , 2006 .

[62]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[63]  L. Samuelson,et al.  Optical interference from pairs and arrays of nanowires. , 2006, Nano letters (Print).

[64]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[65]  Jin Young Kim,et al.  New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide layer , 2006, SPIE OPTO.

[66]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[67]  Husnu Emrah Unalan,et al.  Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells , 2005 .

[68]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[69]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[70]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[71]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[72]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[73]  Ilan Gur,et al.  Hybrid Organic-Nanocrystal Solar Cells , 2005 .

[74]  Michael D. McGehee,et al.  Ordered Organic-Inorganic Bulk Heterojunction Photovoltaic Cells , 2005 .

[75]  Dong Young Kim,et al.  Electrospun TiO2 electrodes for dye-sensitized solar cells , 2004 .

[76]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[77]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[78]  John A. Rogers,et al.  p-Channel, n-Channel Thin Film Transistors and p−n Diodes Based on Single Wall Carbon Nanotube Networks , 2004 .

[79]  John A. Rogers,et al.  Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films , 2004 .

[80]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[81]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[82]  Ting Xu,et al.  Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation , 2004 .

[83]  J. Hollingsworth,et al.  Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. , 2003, Physical review letters.

[84]  Ronald Gronsky,et al.  Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays , 2003 .

[85]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[86]  Shahed U. M. Khan,et al.  Photoresponse of n-TiO2 thin film and nanowire electrodes , 2003 .

[87]  Emmanuel Kymakis,et al.  Single-wall carbon nanotube/conjugated polymer photovoltaic devices , 2002 .

[88]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[89]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[90]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[91]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[92]  Jürgen H. Werner,et al.  Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells , 1993 .

[93]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[94]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[95]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[96]  E. Yablonovitch,et al.  Photonic band structure: The face-centered-cubic case. , 1989, Physical review letters.

[97]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[98]  H. J. Goldsmid,et al.  Thermoelectric Refrigeration , 1964 .

[99]  G. J. Snyder,et al.  Direct Electrodeposition of Highly Dense 50 nm Bi 2 Te 3y Se y Nanowire Arrays , 2022 .