Anisotropic Measures of Third Order Derivatives and the Quadratic Interpolation Error on Triangular Elements
暂无分享,去创建一个
[1] Weiming Cao,et al. On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..
[2] Robert D. Russell,et al. A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..
[3] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[4] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[5] J. Shewchuk. What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .
[6] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[7] Weizhang Huang,et al. Variational mesh adaptation II: error estimates and monitor functions , 2003 .
[8] Weizhang Huang,et al. Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..
[9] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[10] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[11] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[12] Philippe G. Ciarlet,et al. 6. Finite Element Methods for the Plate Problem , 2002 .
[13] E. F. D’Azevedo,et al. Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..
[14] R. B. Simpson. Anisotropic mesh transformations and optimal error control , 1994 .
[15] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[16] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[17] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .