Fuzzy Lasso regression model with exact explanatory variables and fuzzy responses

Abstract Fuzzy multivariate regression analysis is aimed to model the relationship between a set of fuzzy responses and a set of non-fuzzy or fuzzy explanatory variables. This paper extended the Lasso method for multiple linear regression model possessing non-fuzzy explanatory variables and fuzzy responses. The fuzzy Lasso method is able to increase the interpretability of the model by eliminating the variables irrelevant to the fuzzy response variables. For this purpose, a fuzzy penalized method was introduced to estimate unknown fuzzy regression coefficients and tuning constant. Some common goodness-of-fit criteria were also employed to examine the performance of the proposed method. The effectiveness of the proposed method was also assessed through two applied examples and a simulation study. Moreover, the proposed method was compared with several common fuzzy multiple regression models. The numerical results clearly showed higher accuracy of the proposed fuzzy Lasso method compared to the other existing fuzzy multiple regression models in determination of the noninformative explanatory variables. Thus, the proposed fuzzy Lasso regression model can be successfully applied to improve the prediction accuracy and interpretability of the fuzzy multiple regression models for real life applications in expert systems.

[1]  Ping-Teng Chang,et al.  A generalized fuzzy weighted least-squares regression , 1996, Fuzzy Sets Syst..

[2]  Sabyasachi Ghoshray,et al.  A linear regression model using triangular fuzzy number coefficients , 1999, Fuzzy Sets Syst..

[3]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[4]  Hsien-Chung Wu,et al.  Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data , 2003, Comput. Stat. Data Anal..

[5]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[6]  Pierpaolo D'Urso,et al.  Robust fuzzy regression analysis , 2011, Inf. Sci..

[7]  Hsien-Chung Wu,et al.  The construction of fuzzy least squares estimators in fuzzy linear regression models , 2011, Expert Syst. Appl..

[8]  Kamile Sanli Kula,et al.  Fuzzy Robust Regression Analysis Based on the Ranking of Fuzzy Sets , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[9]  Bang-Yong Sohn ROBUST FUZZY LINEAR REGRESSION BASED ON M-ESTIMATORS , 2005 .

[10]  Junzo Watada,et al.  Possibilistic linear regression analysis for fuzzy data , 1989 .

[11]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[12]  Chachi Jalal,et al.  Multiple Fuzzy Regression Model for Fuzzy Input-Output Data , 2016 .

[13]  Jin Hee Yoon,et al.  The statistical inferences of fuzzy regression based on bootstrap techniques , 2015, Soft Comput..

[14]  Usman T. Khan,et al.  A new fuzzy linear regression approach for dissolved oxygen prediction , 2015 .

[15]  C. R. Bector,et al.  A simple method for computation of fuzzy linear regression , 2005, Eur. J. Oper. Res..

[16]  Jin Hee Yoon,et al.  General fuzzy regression using least squares method , 2010, Int. J. Syst. Sci..

[17]  S. M. Taheri,et al.  Fuzzy least-absolutes regression using shape preserving operations , 2012, Inf. Sci..

[18]  M. J. García,et al.  Application of Multivariate Regression Methods to Predict Sensory Quality of Red Wines , 2016 .

[19]  Ebrahim Nasrabadi,et al.  A mathematical-programming approach to fuzzy linear regression analysis , 2004, Appl. Math. Comput..

[20]  Juan Martínez-Moreno,et al.  Estimation of a Fuzzy Regression Model Using Fuzzy Distances , 2016, IEEE Transactions on Fuzzy Systems.

[21]  Wenyi Zeng,et al.  Fuzzy least absolute linear regression , 2017, Appl. Soft Comput..

[22]  H. V. Henderson,et al.  Building Multiple Regression Models Interactively , 1981 .

[23]  Ruili Wang,et al.  An enhanced fuzzy linear regression model with more flexible spreads , 2009, Fuzzy Sets Syst..

[24]  Jin Hee Yoon,et al.  Fuzzy linear regression using rank transform method , 2015, Fuzzy Sets Syst..

[25]  James J. Buckley,et al.  Fuzzy regression using least absolute deviation estimators , 2007, Soft Comput..

[26]  Jung-Hsien Chiang,et al.  Fuzzy Regression Analysis by Support Vector Learning Approach , 2008, IEEE Transactions on Fuzzy Systems.

[27]  Michio Sugeno,et al.  An introductory survey of fuzzy control , 1985, Inf. Sci..

[28]  Mohammad Ghasem Akbari,et al.  Fuzzy semi-parametric partially linear model with fuzzy inputs and fuzzy outputs , 2017, Expert Syst. Appl..

[29]  Ebrahim Nasrabadi,et al.  Fuzzy linear regression analysis: a multi-objective programming approach , 2005, Appl. Math. Comput..

[30]  Jalal Chachi,et al.  A fuzzy robust regression approach applied to bedload transport data , 2017, Commun. Stat. Simul. Comput..

[31]  Pierpaolo D'Urso,et al.  A least-squares approach to fuzzy linear regression analysis , 2000 .

[32]  Ning Wang,et al.  Fuzzy nonparametric regression based on local linear smoothing technique , 2007, Inf. Sci..

[33]  K. S. Kula,et al.  A Study on Fuzzy Robust Regression and Its Application to Insurance , 2012 .

[34]  Rahman Farnoosh,et al.  Integrating Ridge-type regularization in fuzzy nonlinear regression , 2012 .

[35]  Alireza Arabpour,et al.  ESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL , 2008 .

[36]  Wenyi Zeng,et al.  A new fuzzy regression model based on least absolute deviation , 2016, Eng. Appl. Artif. Intell..

[37]  Michael Trott,et al.  The Mathematica guidebook for programming , 2004 .

[38]  Chiang Kao,et al.  Least-squares estimates in fuzzy regression analysis , 2003, Eur. J. Oper. Res..

[39]  Antonio-Francisco Roldán-López-de-Hierro,et al.  A fuzzy regression model based on finite fuzzy numbers and its application to real-world financial data , 2017, J. Comput. Appl. Math..

[40]  S. M. Taheri,et al.  FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS , 2012 .

[41]  Thierry Denoeux,et al.  Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..

[42]  Kwang Hyung Lee,et al.  First Course on Fuzzy Theory and Applications , 2005, Advances in Soft Computing.

[43]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[44]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[45]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[46]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[47]  Hsien-Chung Wu Linear regression analysis for fuzzy input and output data using the extension principle , 2003 .

[48]  P. Diamond,et al.  Extended fuzzy linear models and least squares estimates , 1997 .

[49]  Andrzej Bargiela,et al.  Multiple regression with fuzzy data , 2007, Fuzzy Sets Syst..

[50]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .

[51]  E. Lee,et al.  Nonparametric fuzzy regression—k-NN and kernel smoothing techniques , 1999 .

[52]  Pierpaolo D'Urso,et al.  Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..

[53]  Chachi Jalal,et al.  TWO ROBUST FUZZY REGRESSION MODELS AND THEIR APPLICATIONS IN PREDICTING IMPERFECTIONS OF COTTON YARN , 2016 .