Air pollution control with semi-infinite programming

Environment issues are more than ever important in a modern society. Complying with stricter legal thresholds on pollution emissions raises an important economic issue. This paper presents some ideas in the use of optimization tools to help in the planning and control of stationary pollution sources. Three main semi-infinite programming approaches are described. The first consists in optimizing an objective function while the pollution level in a given region is kept bellow a given threshold. In the second approach the maximum pollution level in a given region is computed and in the third an air pollution abatement problem is considered. These formulations allow to obtain the best control parameters and the maxima pollution positions, where the sampling stations should be placed. A specific modeling language was used to code four academic problems. Numerical results computed with a semi-infinite programming solver are shown.

[1]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[2]  HettichR.,et al.  Semi-infinite programming , 1979 .

[3]  R. Reemtsen,et al.  Discretization methods for the solution of semi-infinite programming problems , 1991 .

[4]  Rainer Hettich,et al.  An implementation of a discretization method for semi-infinite programming , 1986, Math. Program..

[5]  W. van Honstede An approximation method for semi-infinite problems , 1979 .

[6]  N. Nevers,et al.  Air Pollution Control Engineering , 1994 .

[7]  Edite M. G. P. Fernandes,et al.  A quasi-Newton interior point method for semi-infinite programming , 2003, Optim. Methods Softw..

[8]  Marco A. López,et al.  Semi-infinite programming : recent advances , 2001 .

[9]  Cincinnati WORKBOOK OF ATMOSPHERIC DISPERSION ESTIMATES , 1970 .

[10]  W L Gorr,et al.  Optimal Control Strategies for Air Quality Standards and Regulatory Policy , 1972 .

[11]  H. Breusers,et al.  Applied Mathematical Modelling , 1976 .

[12]  Rainer Hettich,et al.  A note on an implementation of a method for quadratic semi-infinite programming , 1990, Math. Program..

[13]  P. Gill,et al.  User's Guide for SOL/NPSOL: A Fortran Package for Nonlinear Programming. , 1983 .

[14]  Kenneth O. Kortanek,et al.  Numerical Optimization Techniques in Air Quality Modeling: Objective Interpolation Formulas for the Spatial Distribution of Pollutant Concentration , 1977 .

[15]  W. Cooper,et al.  Survey of mathematical programming models in air pollution management , 1997 .

[16]  L. Morawska,et al.  A review of dispersion modelling and its application to the dispersion of particles : An overview of different dispersion models available , 2006 .

[17]  J. Davenport Editor , 1960 .

[18]  Harvey J. Greenberg,et al.  Mathematical Programming Models for Environmental Quality Control , 1995, Oper. Res..

[19]  C. J. Price,et al.  Non-linear semi-infinite programming , 1992 .

[20]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[21]  Yung-Tse Hung,et al.  Air Pollution Control Engineering , 2004 .

[22]  K O Kortanek,et al.  Analytical Properties of Some Multiple-Source Urban Diffusion Models , 1972 .

[23]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[24]  Duane A. Haugen,et al.  Lectures on Air Pollution and Environmental Impact Analyses , 1982 .

[25]  Edite M. G. P. Fernandes,et al.  SIPAMPL: Semi-infinite programming with AMPL , 2004, TOMS.

[26]  F. Gifford,et al.  Use of routine meteorological observations for estimating atmospheric dispersion , 1961 .

[27]  Rein Luus,et al.  Reliability of optimization procedures for obtaining global optimum , 1978 .

[28]  P. Gill,et al.  Fortran package for nonlinear programming. User's Guide for NPSOL (Version 4. 0) , 1986 .

[29]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[30]  G. Briggs,et al.  Plume Rise Predictions , 1982 .