Temporality as Seen through Translation: A Case Study on Hindi Texts

Temporality has significantly contributed to various aspects of Natural Language Processing applications. In this paper, we determine the extent to which temporal orientation is preserved when a sentence is translated manually and automatically from the Hindi language to the English language. We show that the manually and automatically identified temporal orientation in English translated (both manual and automatic) sentences provides a good match with the temporal orientation of the Hindi texts. We also find that the task of manual temporal annotation becomes difficult in the translated texts while the automatic temporal processing system manages to correctly capture temporal information from the translations.

[1]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[2]  Pushpak Bhattacharyya,et al.  Simple Syntactic and Morphological Processing Can Help English-Hindi Statistical Machine Translation , 2008, IJCNLP.

[3]  Pushpak Bhattacharyya,et al.  IITP English-Hindi Machine Translation System at WAT 2016 , 2016, WAT@COLING.

[4]  Miriam J. Metzger Making sense of credibility on the Web: Models for evaluating online information and recommendations for future research , 2007, J. Assoc. Inf. Sci. Technol..

[5]  Roi Blanco,et al.  Ranking related news predictions , 2011, SIGIR.

[6]  Susan T. Dumais,et al.  Understanding temporal query dynamics , 2011, WSDM '11.

[7]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[8]  Chandra Shekhar,et al.  MaTra: A Practical Approach to Fully-Automatic Indicative English- Hindi Machine Translation , .

[9]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[10]  Ondrej Bojar,et al.  HindEnCorp - Hindi-English and Hindi-only Corpus for Machine Translation , 2014, LREC.

[11]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[12]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[13]  R. Sinha,et al.  Machine Translation of Bi-lingual Hindi-English (Hinglish) Text , 2005, MTSUMMIT.

[14]  Srikanta J. Bedathur,et al.  Index maintenance for time-travel text search , 2012, SIGIR '12.

[15]  Daniel Nettle,et al.  Time perspective, personality and smoking, body mass, and physical activity: an empirical study. , 2009, British journal of health psychology.

[16]  Ajai Kumar Jain,et al.  AnglaHindi: an English to Hindi machine-aided translation system , 2003, MTSUMMIT.

[17]  Margaret L. Kern,et al.  Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach , 2013, PloS one.

[18]  Yann Mathet,et al.  TempoWordNet for sentence time tagging , 2014, WWW '14 Companion.

[19]  James Pustejovsky,et al.  The TempEval challenge: identifying temporal relations in text , 2009, Lang. Resour. Evaluation.

[20]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[21]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[22]  Roi Blanco,et al.  Overview of NTCIR-11 Temporal Information Access (Temporalia) Task , 2014, NTCIR.

[23]  Asif Ekbal,et al.  Building Tempo-HindiWordNet: A resource for effective temporal information access in Hindi , 2016, LREC.

[24]  Pushpak Bhattacharyya,et al.  The IIT Bombay Hindi-English Translation System at WMT 2014 , 2014, WMT@ACL.

[25]  Maarten Sap,et al.  Extracting Human Temporal Orientation from Facebook Language , 2015, NAACL.

[26]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[27]  Sambhav Jain,et al.  Hindi to English Machine Translation: Using Effective Selection in Multi-Model SMT , 2014, LREC.

[28]  P. Webley,et al.  Parents’ influence on children’s future orientation and saving , 2006 .

[29]  Kenneth Heafield,et al.  KenLM: Faster and Smaller Language Model Queries , 2011, WMT@EMNLP.

[30]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[31]  Andy Way,et al.  Maintaining Sentiment Polarity in Translation of User-Generated Content , 2017, Prague Bull. Math. Linguistics.

[32]  James Pustejovsky,et al.  The language of time : a reader , 2005 .

[33]  Pushpak Bhattacharyya,et al.  Interlingua-based English–Hindi Machine Translation and Language Divergence , 2001, Machine Translation.

[34]  P. Zimbardo,et al.  Putting Time in Perspective: A Valid, Reliable Individual-Differences Metric , 1999 .

[35]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[36]  Saif Mohammad,et al.  Sentiment after Translation: A Case-Study on Arabic Social Media Posts , 2015, NAACL.

[37]  Ricardo Campos,et al.  Survey of Temporal Information Retrieval and Related Applications , 2014, ACM Comput. Surv..