Influence of interface relaxation on passivation kinetics in H2 of coordination Pb defects at the (111)Si/SiO2 interface revealed by electron spin resonance

Electron spin resonance studies have been carried out on the isothermal passivation kinetics in 1 atm molecular H2 of trivalent Si traps (Pbs;Si3≡Si•) at the interface of thermal (111)/Si/SiO2 as a function of oxidation temperature Tox in the range 250–1100 °C. Interpretation within the generalized simple thermal (GST) passivation model, based on first-order interaction kinetics, reveals a distinct increase in spread σEf in the activation energy for passivation Ef with decreasing Tox (∼3 times in the covered Tox window), while the other key kinetic parameters (Ef, preexponential factor) remain essentially unchanged. The variation in σEf is ascribed to differently relaxed interfacial stress, affecting the spread in Pb defect morphology. In a second analytic part, the impact of the variation in Ef, and correlatively in the activation energy Ed for PbH dissociation, on Pb–hydrogen interaction kinetics is assessed within the GST-based full interaction scheme, describing parallel competing action of passivatio...

[1]  V. Afanas’ev,et al.  Electron spin resonance observation of Si dangling-bond-type defects at the interface of (100) Si with ultrathin layers of SiOx, Al2O3 and ZrO2 , 2001 .

[2]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[3]  Car,et al.  Dangling bond defects at Si-SiO2 interfaces: atomic structure of the P(b1) center , 2000, Physical review letters.

[4]  A. Stesmans,et al.  Paramagnetic defects at the interface of ultrathin oxides grown under vacuum ultraviolet photon excitation on (111) and (100) Si , 2000 .

[5]  L. Ragnarsson,et al.  Electrical characterization of Pb centers in (100)Si–SiO2 structures: The influence of surface potential on passivation during post metallization anneal , 2000 .

[6]  Andre Stesmans,et al.  Interaction of Pb defects at the (111)Si/SiO2 interface with molecular hydrogen: Simultaneous action of passivation and dissociation , 2000 .

[7]  E. A. Ogryzlo,et al.  Rate constants for the reaction of H2 with defects at the SiO2/Si(111) interface , 2000 .

[8]  A. Stesmans Dissociation kinetics of hydrogen-passivated Pb defects at the (111)Si/SiO2 interface , 2000 .

[9]  J. C. Phillips,et al.  Bonding constraint-induced defect formation at Si-dielectric interfaces and internal interfaces in dual-layer gate dielectrics , 1999 .

[10]  Franck Delmotte,et al.  Electron-paramagnetic-resonance study of the ( 100 ) S i / S i 3 N 4 interface , 1999 .

[11]  V. Afanas’ev,et al.  P b 1 interface defect in thermal ( 100 ) S i / S i O 2 : 29 Si hyperfine interaction , 1998 .

[12]  Robert M. Wallace,et al.  Evaluating the minimum thickness of gate oxide on silicon using first-principles method , 1998 .

[13]  V. Afanas’ev,et al.  HYDROGEN-INDUCED VALENCE ALTERNATION STATE AT SIO2 INTERFACES , 1998 .

[14]  Daniel M. Fleetwood,et al.  Thermally activated electron capture by mobile protons in SiO2 thin films , 1998 .

[15]  V. Afanas’ev,et al.  Electrical activity of interfacial paramagnetic defects in thermal (100) Si/SiO2 , 1998 .

[16]  A. Stesmans,et al.  LETTER TO THE EDITOR: Undetectability of the ? point defect as an interface state in thermal ? , 1998 .

[17]  Ding-sheng Wang,et al.  Application of Green's-function technique to the calculation of multiphoton absorption coefficients of crystalline solids , 1998 .

[18]  E. A. Ogryzlo,et al.  Monitoring of the formation and removal of bulk, surface, and interfacial carrier traps on silicon(100) , 1996 .

[19]  Stesmans,et al.  Thermally induced interface degradation in (111) Si/SiO2 traced by electron spin resonance. , 1996, Physical review. B, Condensed matter.

[20]  A. Stesmans Revision of H2 passivation of Pb interface defects in standard (111)Si/SiO2 , 1996 .

[21]  A. Stesmans Passivation of Pb0 and Pb1 interface defects in thermal (100) Si/SiO2 with molecular hydrogen , 1996 .

[22]  A. Stesmans Oxidation temperature dependent restructuring of the Pb defect at the (1 1 1) SiSiO2 interface , 1995 .

[23]  J. Stathis Erratum: ‘‘Dissociation kinetics of hydrogen‐passivated (100)Si/SiO2 interface defects’’ [J. Appl. Phys. 77, 6205 (1995)] , 1995 .

[24]  A. Edwards Dissociation of H2 at silicon dangling orbitals in a-SiO2: a quantum mechanical treatment of nuclear motion☆ , 1995 .

[25]  C. R. Helms,et al.  The silicon-silicon dioxide system: Its microstructure and imperfections , 1994 .

[26]  Kelvin G. Lynn,et al.  KINETICS OF HYDROGEN INTERACTION WITH SIO2-SI INTERFACE TRAP CENTERS , 1994 .

[27]  T. Ma,et al.  Ionizing radiation damage near CMOS transistor channel edges , 1992 .

[28]  S. M. Hu,et al.  Stress‐related problems in silicon technology , 1991 .

[29]  Edwards,et al.  Interaction of H and H2 with the silicon dangling orbital at the <111> Si/SiO2 interface. , 1991, Physical review. B, Condensed matter.

[30]  K. L. Brower,et al.  Chemical kinetics of hydrogen and (111)Si-SiO2 interface defects , 1990 .

[31]  K. Taniguchi,et al.  Density relaxation of silicon dioxide on (100) silicon during thermal annealing , 1990 .

[32]  E. Poindexter,et al.  MOS interface states: overview and physicochemical perspective , 1989 .

[33]  K. Lynn,et al.  Hydrogen interaction with oxidized Si(111) probed with positrons , 1989 .

[34]  Brower Kl,et al.  Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface. , 1988 .

[35]  E. Burte Time resolved annealing of interface traps at the silicon oxide‐silicon interface , 1988 .

[36]  P. Balk,et al.  Elimination and Generation of Si ‐ SiO2 Interface Traps by Low Temperature Hydrogen Annealing , 1988 .

[37]  M. L. Reed,et al.  Chemistry of Si‐SiO2 interface trap annealing , 1988 .

[38]  N. Johnson,et al.  Interface traps and Pb centers in oxidized (100) silicon wafers , 1986 .

[39]  David L. Griscom,et al.  Diffusion of radiolytic molecular hydrogen as a mechanism for the post‐irradiation buildup of interface states in SiO2‐on‐Si structures , 1985 .

[40]  D. Biegelsen,et al.  Electronic traps and Pb centers at the Si/SiO2 interface: Band‐gap energy distribution , 1984 .

[41]  Chih-Tang Sah,et al.  Study of the atomic models of three donorlike defects in silicon metal‐oxide‐semiconductor structures from their gate material and process dependencies , 1984 .

[42]  E. Poindexter,et al.  Characterization of Si/SiO2 interface defects by electron spin resonance , 1983 .

[43]  D. Biegelsen,et al.  Low‐temperature annealing and hydrogenation of defects at the Si–SiO2 interface , 1981 .

[44]  Bruce E. Deal,et al.  Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers , 1981 .

[45]  J. E. Shelby,et al.  Molecular diffusion and solubility of hydrogen isotopes in vitreous silica , 1977 .

[46]  P. Balk,et al.  High‐Temperature Annealing of Oxidized Silicon Surfaces , 1971 .

[47]  B. E. Deal,et al.  Low‐Temperature Reduction of Fast Surface States Associated with Thermally Oxidized Silicon , 1971 .

[48]  P. V. Gray,et al.  Si ‐ SiO2 Fast Interface State Measurements , 1968 .