A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization

Evolutionary algorithms (EAs) have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems. Due to its population-based nature, EAs can avoid being trapped in a local optimum, and consequently have the ability to find global optimal solutions. As a novel evolutionary technique, differential evolution (DE) has received increasing attention and wide applications in a variety of fields. DE algorithm uses an efficient way of self-adapting mutation using small populations for function optimization over continuous spaces. The potentialities of DE are its simple structure, easy use, convergence property, quality of solution, and robustness. In this paper, an effective self-adaptive DE algorithm based on Gaussian probability distribution, gamma distribution and chaotic sequence (DEGC) for solving continuous global optimization problems is proposed. The proposed DEGC algorithm is tested on several benchmark functions from the usual literature. Numerical results comparisons with a classical DE approach and a self-adaptive DE approach demonstrate the effectiveness and efficiency of the proposed DEGC algorithm.

[1]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[2]  Alain Dussauchoy,et al.  Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..

[3]  Leandro dos Santos Coelho,et al.  Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches , 2008 .

[4]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[5]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[6]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[8]  Leandro dos Santos Coelho,et al.  Novel Gamma Differential Evolution Approach for Multiobjective Transformer Design Optimization , 2013, IEEE Transactions on Magnetics.

[9]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[10]  Xuesong Wang,et al.  On the use of differential evolution for forward kinematics of parallel manipulators , 2008, Appl. Math. Comput..

[11]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[13]  Kate Smith-Miles,et al.  On chaotic simulated annealing , 1998, IEEE Trans. Neural Networks.

[14]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[16]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  P. Vadstrup,et al.  Parameter identification of induction motors using differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Tomasz M. Gwizdalla,et al.  The role of different genetic operators in the optimization of magnetic models , 2012, Appl. Math. Comput..

[20]  Yun Shang,et al.  A Note on the Extended Rosenbrock Function , 2006 .

[21]  Ioannis G. Tsoulos,et al.  Modifications of real code genetic algorithm for global optimization , 2008, Appl. Math. Comput..

[22]  Gary B. Fogel,et al.  Noisy optimization problems - a particular challenge for differential evolution? , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[23]  Dilip Roy,et al.  Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm , 2010, Appl. Math. Comput..

[24]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[25]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[26]  B. Kinghorn,et al.  Differential evolution - an easy and efficient evolutionary algorithm for model optimisation , 2005 .

[27]  Chao-Hung Wang,et al.  Using genetic algorithms grey theory to forecast high technology industrial output , 2008, Appl. Math. Comput..

[28]  Huanwen Tang,et al.  Application of chaos in simulated annealing , 2004 .

[29]  Ajith Abraham,et al.  New mutation schemes for differential evolution algorithm and their application to the optimization of directional over-current relay settings , 2010, Appl. Math. Comput..

[30]  Gwo-Ching Liao,et al.  Application embedded chaos search immune genetic algorithm for short-term unit commitment , 2004 .

[31]  Bing Li,et al.  Optimizing Complex Functions by Chaos Search , 1998, Cybern. Syst..

[32]  Gary B. Lamont,et al.  Visualizing particle swarm optimization - Gaussian particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[33]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[34]  Leandro dos Santos Coelho,et al.  Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning , 2012, Comput. Math. Appl..

[35]  Wang Sun-an,et al.  A novel immune evolutionary algorithm incorporating chaos optimization , 2006 .

[36]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[37]  Lehrstuhl für Elektrische,et al.  Gaussian swarm: a novel particle swarm optimization algorithm , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[38]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[39]  M. M. Ali,et al.  A numerical study of some modified differential evolution algorithms , 2006, Eur. J. Oper. Res..

[40]  Feifeng Zheng,et al.  Hybrid evolutionary algorithms in a SVR traffic flow forecasting model , 2011, Appl. Math. Comput..

[41]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[42]  Leandro dos Santos Coelho,et al.  A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map , 2011, Expert Syst. Appl..

[43]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[44]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[45]  Kusum Deep,et al.  Quadratic approximation based hybrid genetic algorithm for function optimization , 2008, Appl. Math. Comput..

[46]  Leandro dos Santos Coelho,et al.  Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process , 2012, Expert Syst. Appl..

[47]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[48]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[49]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[50]  Daim-Yuang Sun,et al.  Apply a novel evolutionary algorithm to the solution of parameter selection problems , 2010, Appl. Math. Comput..

[51]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[52]  Chuanwen Jiang,et al.  PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP) , 2006 .

[53]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[54]  Leandro dos Santos Coelho,et al.  Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints , 2007 .