Minimum power and area n-tier multilevel interconnect architectures using optimal repeater insertion

Minimum power CMOS ASIC macrocells are designed by minimizing the macrocell area using a new methodology to optimally insert repeaters for n-tier multilevel interconnect architectures. The minimum macrocell area and power dissipation are projected for the 100, 70 and 50 nm technology generations and compared with a n-tier design without using repeaters. Repeater insertion and a novel interconnect geometry scaling technique decrease the power dissipation by 58-68% corresponding to a macrocell area reduction of 70-78% for the global clock frequency designs of these three technology generations.