The shape parameter in the Gaussian function
暂无分享,去创建一个
[1] Zongmin Wu,et al. Local error estimates for radial basis function interpolation of scattered data , 1993 .
[2] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[3] W. R. Madych,et al. Miscellaneous error bounds for multiquadric and related interpolators , 1992 .
[4] Lin-Tian Luh,et al. The Mystery of the Shape Parameter II , 2010, 1002.2082.
[5] Lin-Tian Luh. The Equivalence Theory of Native Spaces , 2001 .
[6] Len Bos. Bounding the Lebesgue function for Lagrange interpolation in a simplex , 1983 .
[7] Lin-Tian Luh. An Improved Error Bound for Gaussian Interpolation , 2007, 0712.0863.
[8] W. Fleming. Functions of Several Variables , 1965 .
[9] Lin-Tian Luh. The crucial constants in the exponential-type error estimates for Gaussian interpolation , 2008 .
[10] W. Madych,et al. Multivariate interpolation and condi-tionally positive definite functions , 1988 .
[11] Lin-Tian Luh,et al. The Embedding Theory of Native Spaces , 2001 .
[12] Holger Wendland,et al. Multiscale analysis in Sobolev spaces on bounded domains , 2010, Numerische Mathematik.
[13] F. J. Narcowich,et al. Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .
[14] W. Madych,et al. Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .