ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes

Recombination is an important evolutionary force in bacteria, but it remains challenging to reconstruct the imports that occurred in the ancestry of a genomic sample. Here we present ClonalFrameML, which uses maximum likelihood inference to simultaneously detect recombination in bacterial genomes and account for it in phylogenetic reconstruction. ClonalFrameML can analyse hundreds of genomes in a matter of hours, and we demonstrate its usefulness on simulated and real datasets. We find evidence for recombination hotspots associated with mobile elements in Clostridium difficile ST6 and a previously undescribed 310kb chromosomal replacement in Staphylococcus aureus ST582. ClonalFrameML is freely available at http://clonalframeml.googlecode.com/.

[1]  Daniel J. Wilson,et al.  Bacterial Phylogenetic Reconstruction from Whole Genomes Is Robust to Recombination but Demographic Inference Is Not , 2014, mBio.

[2]  Daniel J. Wilson,et al.  Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus , 2014, Nature Communications.

[3]  Mario Recker,et al.  Predicting the virulence of MRSA from its genome sequence , 2014, Genome research.

[4]  Xavier Didelot,et al.  Bayesian Inference of Infectious Disease Transmission from Whole-Genome Sequence Data , 2014, Molecular biology and evolution.

[5]  Tim E A Peto,et al.  Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007–12, with whole pathogen genome sequences: an observational study , 2014, The Lancet. Respiratory medicine.

[6]  Julian Parkhill,et al.  Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study , 2014, The Lancet. Infectious diseases.

[7]  Franziska Layer,et al.  Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance. , 2014, The Journal of antimicrobial chemotherapy.

[8]  Jukka Corander,et al.  Dense genomic sampling identifies highways of pneumococcal recombination , 2014, Nature Genetics.

[9]  Daniel J. Wilson,et al.  Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing , 2014, Journal of Clinical Microbiology.

[10]  Daniel J. Wilson,et al.  Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone , 2014, The Journal of hospital infection.

[11]  X. Didelot,et al.  Evolutionary History of the Clostridium difficile Pathogenicity Locus , 2013, Genome biology and evolution.

[12]  Xavier Didelot,et al.  Inference of the Properties of the Recombination Process from Whole Bacterial Genomes , 2013, Genetics.

[13]  J. Bray,et al.  MLST revisited: the gene-by-gene approach to bacterial genomics , 2013, Nature Reviews Microbiology.

[14]  Daniel J. Wilson,et al.  Diverse sources of C. difficile infection identified on whole-genome sequencing. , 2013, The New England journal of medicine.

[15]  A. Roberts,et al.  Determination of the attP and attB sites of phage CD27 from Clostridium difficile NCTC 12727. , 2013, Journal of medical microbiology.

[16]  Xavier Didelot,et al.  Genomic evolution and transmission of Helicobacter pylori in two South African families , 2013, Proceedings of the National Academy of Sciences.

[17]  J. R. Johnson,et al.  Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data , 2013, The Journal of antimicrobial chemotherapy.

[18]  M. Lipsitch,et al.  Population genomics of post-vaccine changes in pneumococcal epidemiology , 2013, Nature Genetics.

[19]  Richard G. Everitt,et al.  Within-Host Evolution of Staphylococcus aureus during Asymptomatic Carriage , 2013, PloS one.

[20]  Julian Parkhill,et al.  A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic , 2013, Genome research.

[21]  M. Hattori,et al.  Chromosome Painting In Silico in a Bacterial Species Reveals Fine Population Structure , 2013, Molecular biology and evolution.

[22]  R. Goering,et al.  Subpopulations of Staphylococcus aureus Clonal Complex 121 Are Associated with Distinct Clinical Entities , 2013, PloS one.

[23]  X. Didelot,et al.  Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. , 2013, The Journal of infectious diseases.

[24]  Julian Parkhill,et al.  Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study , 2013, The Lancet. Infectious Diseases.

[25]  Daniel J. Wilson,et al.  Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study , 2013, The Lancet. Infectious diseases.

[26]  D. Falush,et al.  Progressive genome-wide introgression in agricultural Campylobacter coli , 2012, Molecular ecology.

[27]  J. Corander,et al.  Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus , 2012, Genome Biology.

[28]  Paolo Piazza,et al.  Microevolutionary analysis of Clostridium difficile genomes to investigate transmission , 2012, Genome Biology.

[29]  Daniel J. Wilson,et al.  Transforming clinical microbiology with bacterial genome sequencing , 2012, Nature Reviews Genetics.

[30]  G. Dougan,et al.  Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology , 2012, PLoS pathogens.

[31]  G. McMullan,et al.  Comparative Transcriptional Analysis of Clinically Relevant Heat Stress Response in Clostridium difficile Strain 630 , 2012, PloS one.

[32]  Daniel J. Wilson,et al.  A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance , 2012, BMJ Open.

[33]  Keith A. Jolley,et al.  Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain , 2012, Microbiology.

[34]  Peter Donnelly,et al.  Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease , 2012, Proceedings of the National Academy of Sciences.

[35]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[36]  P. Donnelly,et al.  Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event , 2012, Nature Genetics.

[37]  Ole Lund,et al.  Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria , 2012, Journal of Clinical Microbiology.

[38]  Julian Parkhill,et al.  Evidence for several waves of global transmission in the seventh cholera pandemic , 2011, Nature.

[39]  D. Falush,et al.  Helicobacter pylori genome evolution during human infection , 2011, Proceedings of the National Academy of Sciences.

[40]  J. Burton,et al.  Rapid Pneumococcal Evolution in Response to Clinical Interventions , 2011, Science.

[41]  D. Falush,et al.  Inference of Homologous Recombination in Bacteria Using Whole-Genome Sequences , 2010, Genetics.

[42]  X. Didelot,et al.  Impact of recombination on bacterial evolution. , 2010, Trends in microbiology.

[43]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[44]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[45]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[46]  M. Quail,et al.  Genome Sequence of a Recently Emerged, Highly Transmissible, Multi-Antibiotic- and Antiseptic-Resistant Variant of Methicillin-Resistant Staphylococcus aureus, Sequence Type 239 (TW) , 2009, Journal of bacteriology.

[47]  D. Falush,et al.  Genealogical typing of Neisseria meningitidis , 2009, Microbiology.

[48]  Daniel Falush,et al.  SimMLST: simulation of multi-locus sequence typing data under a neutral model , 2009, Bioinform..

[49]  X. Didelot,et al.  A comparison of homologous recombination rates in bacteria and archaea , 2009, The ISME Journal.

[50]  D. Graham,et al.  The Peopling of the Pacific from a Bacterial Perspective , 2009, Science.

[51]  Daniel J. Wilson,et al.  Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni , 2008, Molecular biology and evolution.

[52]  D. Falush,et al.  Convergence of Campylobacter Species: Implications for Bacterial Evolution , 2008, Science.

[53]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[54]  D. Falush,et al.  Inference of Bacterial Microevolution Using Multilocus Sequence Data , 2007, Genetics.

[55]  C. Fraser,et al.  Recombination and the Nature of Bacterial Speciation , 2007, Science.

[56]  Daniel Falush,et al.  A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? , 2006, Genome research.

[57]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[58]  Julian Parkhill,et al.  The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome , 2006, Nature Genetics.

[59]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[60]  G. McVean,et al.  Approximating the coalescent with recombination , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  Daniel J. Wilson,et al.  The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. , 2005, Molecular biology and evolution.

[62]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[63]  D. Robinson,et al.  Evolution of Staphylococcus aureus by Large Chromosomal Replacements , 2004, Journal of bacteriology.

[64]  R. Nielsen,et al.  Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. , 2003, Genetics.

[65]  M. Stephens,et al.  Traces of Human Migrations in Helicobacter pylori Populations , 2003, Science.

[66]  K. Crandall,et al.  The Effect of Recombination on the Accuracy of Phylogeny Estimation , 2002, Journal of Molecular Evolution.

[67]  Paul Fearnhead,et al.  estimating recombination from gene sequences , 2001 .

[68]  J. Hein,et al.  Recombination and the molecular clock. , 2000, Molecular biology and evolution.

[69]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[70]  R. Shamir,et al.  A fast algorithm for joint reconstruction of ancestral amino acid sequences. , 2000, Molecular biology and evolution.

[71]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[72]  J. Hein,et al.  The coalescent with gene conversion. , 2000, Genetics.

[73]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[74]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Guttman,et al.  Recombination and clonality in natural populations of Escherichia coli. , 1997, Trends in ecology & evolution.

[76]  D. Dykhuizen,et al.  Clonal divergence in Escherichia coli as a result of recombination, not mutation. , 1994, Science.

[77]  J. Felsenstein,et al.  A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.

[78]  R Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. , 1990, Genetics.

[79]  C. J-F,et al.  THE COALESCENT , 1980 .