Design Optimization of Single-/Dual-Band FET LNAs Using Noise Transformation Matrix

This paper describes the design optimization of single- and dual-band inductively source degenerated field-effect transistor low-noise amplifiers (LNAs) using an analytical formula of noise parameters derived through a noise transformation matrix. The dual-band LNA design can be directly expanded from the single-band LNA design using a noise transformation matrix. The derived noise formulas of LNAs reveal that a simultaneous noise and input match (SNIM) can be obtained at a single frequency for a single-band LNA. For a concurrent dual-band LNA, the simultaneous noise match cannot be achieved at two different operating frequencies and thus a balanced design in noise performance is developed using a noise transformation matrix. This paper demonstrates a 5-GHz single-band and a 2.4/5-GHz concurrent dual-band two-stage single-voltage-supply LNA using 0.15- μm depletion-mode pseudomorphic HEMT technology to verify design methodology. The inductively source-degenerated common-source amplifier is applied at the input stage. The 5-GHz common-source common-drain (CS-CD) LNA shows 1.4-dB noise figure (NF) with an SNIM. Moreover, the 2.4/5-GHz CS-CD concurrent dual-band LNA has a balanced noise performance of 2.2-dB NF at 2.4 GHz and 2.0-dB NF at 5 GHz, respectively.

[1]  J. Gil,et al.  Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier , 2005, IEEE Journal of Solid-State Circuits.

[2]  Xiaohua Yu,et al.  Analysis and Design of a Reconfigurable Multimode Low-Noise Amplifier Utilizing a Multitap Transformer , 2013, IEEE Transactions on Microwave Theory and Techniques.

[3]  Sang-Gug Lee,et al.  CMOS low-noise amplifier design optimization techniques , 2004, IEEE Transactions on Microwave Theory and Techniques.

[4]  Ulrich L. Rohde,et al.  Microwave Circuit Design Using Linear and Nonlinear Techniques: Vendelin/Microwave Circuit Design Using Linear and Nonlinear Techniques , 1990 .

[5]  Nam-Jin Oh Corrections to “CMOS Low-Noise Amplifier Design Optimization Techniques” [May 04 1433-1442] , 2007 .

[6]  P. M. Smith,et al.  An ultra-low DC power ultra-flat multi-octave MHEMT LNA MMIC , 2000, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuits Symposium. 22nd Annual Technical Digest 2000. (Cat. No.00CH37084).

[7]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[8]  Hermann A. Haus,et al.  Noise characteristics of gallium arsenide field-effect transistors , 1974 .

[9]  Shey-Shi Lu,et al.  Authors' reply [to comments on "A 2.17-dB NF 5-GHz-Band Monolithic CMOS LNA With 10-mW DC Power Consumption"] , 2009 .

[10]  In Man Kang,et al.  Analytical thermal noise model suitable for circuit design using short-channel MOSFETs , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[11]  Seok-Kyun Han,et al.  Current-Reused Ultra Low Power, Low Noise LNA${+}$Mixer , 2009, IEEE Microwave and Wireless Components Letters.

[12]  T. H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: OSCILLATORS AND SYNTHESIZERS , 2003 .

[13]  C. F. Krumm,et al.  Noise performance of gallium arsenide field-effect transistors , 1976 .

[14]  Jun-De Jin,et al.  A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique , 2007, IEEE Microwave and Wireless Components Letters.

[15]  A. Ziel Noise in solid state devices and circuits , 1986 .

[16]  Hossein Hashemi,et al.  Concurrent multiband low-noise amplifiers-theory, design, and applications , 2002 .

[17]  M.J.O. Strutt,et al.  Changes of the four noise parameters due to general changes of linear two-port circuits , 1973 .

[18]  Melanie Hartmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[19]  Jingxue Lu,et al.  Comments on "CMOS low-noise amplifier design optimization techniques" , 2006 .

[20]  H. Morkner,et al.  A novel 3 V, 7 mA PHEMT GaAs active MMIC mixer/LNA for wireless applications , 1995, IEEE NTC,Conference Proceedings Microwave Systems Conference.

[21]  Nathan M. Neihart,et al.  A Dual-Band 2.45/6 GHz CMOS LNA Utilizing a Dual-Resonant Transformer-Based Matching Network , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  G. Gonzalez Microwave Transistor Amplifiers: Analysis and Design , 1984 .

[23]  Cam Nguyen,et al.  A Concurrent Tri-Band Low-Noise Amplifier With a Novel Tri-Band Load Resonator Employing Feedback Notches , 2013, IEEE Transactions on Microwave Theory and Techniques.

[24]  J.B. Hacker,et al.  InAs/AlSb HEMT and Its Application to Ultra-Low-Power Wideband High-Gain Low-Noise Amplifiers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[25]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .

[26]  Shey-Shi Lu,et al.  A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10 mW DC power consumption , 2002, VLSIC 2002.

[27]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[28]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[29]  D. Yamauchi,et al.  Design and Analysis of Ultra Wideband GaN Dual-Gate HEMT Low-Noise Amplifiers , 2009, IEEE Transactions on Microwave Theory and Techniques.

[30]  Hsien-Shun Wu,et al.  A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching , 2012, IEEE Transactions on Microwave Theory and Techniques.