dTL2: Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems

The differential temporal dynamic logic dTL2 is a logic to specify temporal properties of hybrid systems. It combines differential dynamic logic with temporal logic to reason about the intermediate states reached by a hybrid system. The logic dTL2 supports some linear time temporal properties of LTL. It extends differential temporal dynamic logic dTL with nested temporalities. We provide a semantics and a proof system for the logic dTL2, and show its usefulness for nontrivial temporal properties of hybrid systems. We take particular care to handle the case of alternating universal dynamic and existential temporal modalities and its dual, solving an open problem formulated in previous work.

[1]  André Platzer,et al.  A Temporal Dynamic Logic for Verifying Hybrid System Invariants , 2007, LFCS.

[2]  David Harel,et al.  Process Logic: Expressiveness, Decidability, Completeness , 1980, FOCS.

[3]  Marco Roveri,et al.  Requirements Validation for Hybrid Systems , 2009, CAV.

[4]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[5]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[6]  Anil Nerode,et al.  Logical Foundations of Computer Science, International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings , 1994, LFCS.

[7]  Davide Bresolin,et al.  HyLTL: a temporal logic for model checking hybrid systems , 2013, HAS.

[8]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[9]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[10]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[11]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[12]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[13]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[14]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[15]  Rohit Parikh A decidability result for a second order process logic , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[16]  Bernhard Beckert,et al.  A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities , 2001, IJCAR.

[17]  André Platzer,et al.  Logics of Dynamical Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[18]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[19]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[20]  Nicolas Markey,et al.  Non-deterministic Temporal Logics for General Flow Systems , 2004, HSCC.

[21]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[22]  Hirokazu Nishimura Descriptively complete process logic , 2004, Acta Informatica.

[23]  Carla Piazza,et al.  Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic Model Checking and Its Applications to Systems Biology , 2005, ATVA.

[24]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .