Extremal results for odd cycles in sparse pseudorandom graphs

AbstractWe consider extremal problems for subgraphs of pseudorandom graphs. For graphs F and Г the generalized Turán density πF(Г) denotes the relative density of a maximum subgraph of Г, which contains no copy of F. Extending classical Turán type results for odd cycles, we show that πF(Г)=1/2 provided F is an odd cycle and Г is a sufficiently pseudorandom graph.In particular, for (n,d,λ)-graphs Г, i.e., n-vertex, d-regular graphs with all non-trivial eigenvalues in the interval [−λ,λ], our result holds for odd cycles of length ℓ, provided $$\lambda ^{\ell - 2} \ll \frac{{d^{\ell - 1} }} {n}\log (n)^{ - (\ell - 2)(\ell - 3)} .$$ Up to the polylog-factor this verifies a conjecture of Krivelevich, Lee, and Sudakov. For triangles the condition is best possible and was proven previously by Sudakov, Szabó, and Vu, who addressed the case when F is a complete graph. A construction of Alon and Kahale (based on an earlier construction of Alon for triangle-free (n,d;λ)-graphs) shows that our assumption on Г is best possible up to the polylog-factor for every odd ℓ≥5.

[1]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[2]  Miklós Simonovits,et al.  Extremal subgraphs of random graphs , 1990, J. Graph Theory.

[3]  Yoshiharu Kohayakawa,et al.  Turán's theorem for pseudo-random graphs , 2007, J. Comb. Theory, Ser. A.

[4]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[5]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[6]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[7]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[8]  N. Alon,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .

[9]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[10]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[11]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[12]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[13]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[14]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[15]  W. T. Gowers,et al.  On the KŁR conjecture in random graphs , 2013, 1305.2516.

[16]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[17]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[18]  Béla Bollobás,et al.  Random Graphs , 1985 .

[19]  F. Chung A Spectral Turán Theorem , 2005, Combinatorics, Probability and Computing.

[20]  Benny Sudakov,et al.  Resilient Pancyclicity of Random and Pseudorandom Graphs , 2009, SIAM J. Discret. Math..

[21]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[22]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[23]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[24]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[25]  Benny Sudakov,et al.  A generalization of Turán's theorem , 2005, J. Graph Theory.

[26]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[27]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[28]  Yufei Zhao,et al.  Extremal results in sparse pseudorandom graphs , 2012, ArXiv.