Probing the Time Structure of the Quark-Gluon Plasma with Top Quarks.

The tiny droplets of quark gluon plasma (QGP) created in high-energy nuclear collisions experience fast expansion and cooling with a lifetime of a few fm/c. Despite the information provided by probes such as jet quenching and quarkonium suppression, and the excellent description by hydrodynamical models, direct access to the time evolution of the system remains elusive. We point out that the study of hadronically decaying W bosons, notably in events with a top-antitop quark pair, can provide key novel insight into the time structure of the QGP. This is because of a unique feature, namely a time delay between the moment of the collision and that when the W-boson decay products start interacting with the medium. Furthermore, the length of the time delay can be constrained by selecting specific reconstructed top-quark momenta. We carry out a Monte Carlo feasibility study and find that the LHC has the potential to bring first limited information on the time structure of the QGP. Substantially increased LHC heavy-ion luminosities or future higher-energy colliders would open opportunities for more extensive studies.

[1]  T. Hansl-Kozanecka,et al.  Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays , 2010, 1006.4384.

[2]  V. M. Ghete,et al.  CMS Collaboration , 2019, Nuclear Physics A.

[3]  M. Jowett Colliding Heavy Ions at the LHC , 2018 .

[4]  V. M. Ghete,et al.  Observation of Top Quark Production in Proton-Nucleus Collisions. , 2017, Physical review letters.

[5]  S. M. Etesami,et al.  Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at sqrt[s]=13  TeV. , 2017, Physical review letters.

[6]  Projected Heavy Ion Physics Performance at the High Luminosity LHC Era with the CMS Detector , 2017 .

[7]  J. Wessels,et al.  Proton–Lead Collisions at the CERN LHC , 2016 .

[8]  C. Salgado,et al.  Energy versus centrality dependence of the jet quenching parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ha , 2016, The European Physical Journal. C, Particles and Fields.

[9]  C. Loizides Experimental overview on small collision systems at the LHC , 2016, 1602.09138.

[10]  E. Scomparin,et al.  Heavy-ion collisions at the Large Hadron Collider: A review of the results from Run 1 , 2015, The European Physical Journal Plus.

[11]  L. Pang,et al.  Physics perspectives of heavy-ion collisions at very high energy , 2015, 1510.05754.

[12]  J. Huston,et al.  PDF4LHC recommendations for LHC Run II , 2015, 1510.03865.

[13]  Hs Hayward,et al.  ATLAS Phase-II Upgrade Scoping Document , 2015 .

[14]  J. T. Childers,et al.  Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at s=7$$ \sqrt{s}=7 $$ TeV in the ATLAS detector , 2015 .

[15]  D Contardo,et al.  Technical Proposal for the Phase-II Upgrade of the CMS Detector , 2015 .

[16]  K. Krajczár,et al.  Top-quark production in proton–nucleus and nucleus–nucleus collisions at LHC energies and beyond , 2015, 1501.05879.

[17]  B. Müller,et al.  Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions , 2014 .

[18]  Veronica Sanz,et al.  Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production , 2013, 1303.6636.

[19]  K. Tywoniuk,et al.  Jet physics in heavy-ion collisions , 2013, 1302.2579.

[20]  S. Jeon,et al.  HYDRODYNAMIC MODELING OF HEAVY-ION COLLISIONS , 2013, 1301.5893.

[21]  C. Salgado,et al.  New picture of jet quenching dictated by color coherence , 2012, 1210.7765.

[22]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[23]  Torbjörn Sjöstrand,et al.  Interleaved parton showers and tuning prospects , 2010, 1011.1759.

[24]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[25]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[26]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[27]  G. Ridolfi,et al.  A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction , 2007, 0707.3088.

[28]  S. Klein,et al.  Observations of beam losses due to bound-free pair production in a heavy-ion collider. , 2007, Physical review letters.

[29]  J. Butterworth,et al.  WW scattering at the LHC , 2002, hep-ph/0201098.

[30]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[31]  M. Seymour Searches for new particles using cone and cluster jet algorithms: a comparative study , 1994 .

[32]  M. Seymour,et al.  Longitudinally-invariant k ⊥ -clustering algorithms for hadron-hadron collisions , 1993 .

[33]  Ellis,et al.  Successive combination jet algorithm for hadron collisions. , 1993, Physical review. D, Particles and fields.

[34]  R. Adams Proceedings , 1947 .