Probing the Time Structure of the Quark-Gluon Plasma with Top Quarks.
暂无分享,去创建一个
[1] T. Hansl-Kozanecka,et al. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays , 2010, 1006.4384.
[2] V. M. Ghete,et al. CMS Collaboration , 2019, Nuclear Physics A.
[3] M. Jowett. Colliding Heavy Ions at the LHC , 2018 .
[4] V. M. Ghete,et al. Observation of Top Quark Production in Proton-Nucleus Collisions. , 2017, Physical review letters.
[5] S. M. Etesami,et al. Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at sqrt[s]=13 TeV. , 2017, Physical review letters.
[6] Projected Heavy Ion Physics Performance at the High Luminosity LHC Era with the CMS Detector , 2017 .
[7] J. Wessels,et al. Proton–Lead Collisions at the CERN LHC , 2016 .
[8] C. Salgado,et al. Energy versus centrality dependence of the jet quenching parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ha , 2016, The European Physical Journal. C, Particles and Fields.
[9] C. Loizides. Experimental overview on small collision systems at the LHC , 2016, 1602.09138.
[10] E. Scomparin,et al. Heavy-ion collisions at the Large Hadron Collider: A review of the results from Run 1 , 2015, The European Physical Journal Plus.
[11] L. Pang,et al. Physics perspectives of heavy-ion collisions at very high energy , 2015, 1510.05754.
[12] J. Huston,et al. PDF4LHC recommendations for LHC Run II , 2015, 1510.03865.
[13] Hs Hayward,et al. ATLAS Phase-II Upgrade Scoping Document , 2015 .
[14] J. T. Childers,et al. Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at s=7$$ \sqrt{s}=7 $$ TeV in the ATLAS detector , 2015 .
[15] D Contardo,et al. Technical Proposal for the Phase-II Upgrade of the CMS Detector , 2015 .
[16] K. Krajczár,et al. Top-quark production in proton–nucleus and nucleus–nucleus collisions at LHC energies and beyond , 2015, 1501.05879.
[17] B. Müller,et al. Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions , 2014 .
[18] Veronica Sanz,et al. Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production , 2013, 1303.6636.
[19] K. Tywoniuk,et al. Jet physics in heavy-ion collisions , 2013, 1302.2579.
[20] S. Jeon,et al. HYDRODYNAMIC MODELING OF HEAVY-ION COLLISIONS , 2013, 1301.5893.
[21] C. Salgado,et al. New picture of jet quenching dictated by color coherence , 2012, 1210.7765.
[22] M. Cacciari,et al. FastJet user manual , 2011, 1111.6097.
[23] Torbjörn Sjöstrand,et al. Interleaved parton showers and tuning prospects , 2010, 1011.1759.
[24] E. Re,et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.
[25] M. Cacciari,et al. The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.
[26] Peter Skands,et al. A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..
[27] G. Ridolfi,et al. A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction , 2007, 0707.3088.
[28] S. Klein,et al. Observations of beam losses due to bound-free pair production in a heavy-ion collider. , 2007, Physical review letters.
[29] J. Butterworth,et al. WW scattering at the LHC , 2002, hep-ph/0201098.
[30] S. Mrenna,et al. Pythia 6.3 physics and manual , 2003, hep-ph/0308153.
[31] M. Seymour. Searches for new particles using cone and cluster jet algorithms: a comparative study , 1994 .
[32] M. Seymour,et al. Longitudinally-invariant k ⊥ -clustering algorithms for hadron-hadron collisions , 1993 .
[33] Ellis,et al. Successive combination jet algorithm for hadron collisions. , 1993, Physical review. D, Particles and fields.
[34] R. Adams. Proceedings , 1947 .