On the evolution of early development in the Nematoda.

The phylum Nematoda serves as an excellent model system for exploring how development evolves, using a comparative approach to developmental genetics. More than 100 laboratories are studying developmental mechanisms in the nematode Caenorhabditis elegans, and many of the methods that have been developed for C. elegans can be applied to other nematodes. This review summarizes what is known so far about steps in early development that have evolved in the nematodes, and proposes potential experiments that could make use of these data to further our understanding of how development evolves. The promise of such a comparative approach to developmental genetics is to fill a wide gap in our understanding of evolution--a gap spanning from mutations in developmental genes through to their phenotypic results, on which natural selection may act.

[1]  S. Shimeld,et al.  Evolution of developmental mechanisms , 2002, Genome Biology.

[2]  J. Baldwin,et al.  Comparative survey of early embryogenesis of Secernentea (Nematoda), with phylogenetic implications , 2001 .

[3]  G. Seydoux,et al.  Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process , 2000, Nature.

[4]  R. Sommer,et al.  Evolution of nematode development. , 2000, Current opinion in genetics & development.

[5]  E. Haag,et al.  Regulatory elements required for development of caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. , 2000, Genetics.

[6]  Phillip D. Zamore,et al.  RNA Interference , 2000, Science.

[7]  P. Ley Lost in worm space : phylogeny and morphology as road maps to nematode diversity , 2000 .

[8]  Embryonic lineage evolution in nematodes. , 2000 .

[9]  B. Bowerman,et al.  Wnt signalling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. , 2000, Trends in cell biology.

[10]  E. Schierenberg,et al.  Regulative development in a nematode embryo: a hierarchy of cell fate transformations. , 1999, Developmental biology.

[11]  J. Daub,et al.  Parasitic helminth genomics , 1999, Parasitology.

[12]  W. Wood,et al.  Homologs of the Caenorhabditis elegans masculinizing gene her-1 in C. briggsae and the filarial parasite Brugia malayi. , 1999, Genetics.

[13]  S. Strome,et al.  Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. , 1999, Development.

[14]  M. Félix Evolution of developmental mechanisms in nematodes. , 1999, The Journal of experimental zoology.

[15]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[16]  E. Schierenberg,et al.  Specification of gut cell fate differs significantly between the nematodes Acrobeloides nanus and caenorhabditis elegans. , 1998, Developmental biology.

[17]  Y. Panchin,et al.  Nematode phylogeny and embryology , 1998, Nature.

[18]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[19]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[20]  L. Frisse,et al.  Embryonic axis specification in nematodes: evolution of the first step in development , 1998, Current Biology.

[21]  D. Riddle C. Elegans II , 1998 .

[22]  Y. Panchin,et al.  Cell lineage in marine nematode Enoplus brevis. , 1998, Development.

[23]  H. Schnabel,et al.  Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. , 1997, Developmental biology.

[24]  R. Sommer Evolution and development — the nematode vulva as a case study , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  R. Schnabel,et al.  Specification of Cell Fates in the Early Embryo , 1997 .

[26]  J White,et al.  Four-Dimensional Imaging: Computer Visualization of 3D Movements in Living Specimens , 1996, Science.

[27]  R. Raff Understanding Evolution: The Next Step. (Book Reviews: The Shape of Life. Genes, Development, and the Evolution of Animal Form.) , 1996 .

[28]  E. Schierenberg,et al.  Cell-cell communication in nematode embryos: differences between Cephalobus spec. and Caenorhabditis elegans , 1996, Development Genes and Evolution.

[29]  Steven N. Hird,et al.  Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. , 1996, Development.

[30]  E. Schierenberg,et al.  On the development of the alternating free-living and parasitic generations of the nematode Rhabdias bufonis , 1995 .

[31]  K. Kemphues,et al.  Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. , 1995, Genetics.

[32]  R. Kohler, Lords of the fly: Drosophila genetics and the experimental life. , 1995 .

[33]  T. Unnasch The filarial genome project , 1994 .

[34]  G. Wray,et al.  The evolution of echinoderm development is driven by several distinct factors. , 1994, Development (Cambridge, England). Supplement.

[35]  E. Schierenberg,et al.  Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. , 1992, Developmental biology.

[36]  Judith W. Lundelius,et al.  Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage , 1992 .

[37]  W. Maddison A METHOD FOR TESTING THE CORRELATED EVOLUTION OF TWO BINARY CHARACTERS: ARE GAINS OR LOSSES CONCENTRATED ON CERTAIN BRANCHES OF A PHYLOGENETIC TREE? , 1990, Evolution; international journal of organic evolution.

[38]  A. Hyman,et al.  Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position , 1989, The Journal of cell biology.

[39]  D. Morton,et al.  Identification of genes required for cytoplasmic localization in early C. elegans embryos , 1988, Cell.

[40]  A. Hyman,et al.  Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans , 1987, The Journal of cell biology.

[41]  E. Schierenberg Reversal of cellular polarity and early cell-cell interaction in the embryos of Caenorhabditis elegans. , 1987, Developmental biology.

[42]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[43]  D. Brooks,et al.  Pinworms and Primates: A Case Study in Coevolution , 1982 .

[44]  P. Guerrier,et al.  Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. , 1979, Developmental biology.

[45]  A. C. Tarjan,et al.  An illustrated key to nematodes found in fresh water , 1977 .

[46]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[47]  David F. Horrobin,et al.  The Development of Man , 1971 .

[48]  F. R. Lillie The embryology of the unionidae. A study in cell‐lineage , 1895 .