Uniform approximations to finite Hilbert transform and its derivative

Interpolatory integration rules of numerical stability are presented for approximating Cauchy principal value (p.v.) integrals ∫-11 f(t)/(t-c) dt and Hadamard finite part (f.p.) integrals ∫-11f(t)/(t - c)2 dt, -1 < c < 1, respectively, for a given smooth function f(t). Present quadrature rules consist of interpolating f(t) at abscissae in the interval of integration [-1, 1] except for the pole c, where neither the function value f(c) nor its derivative f'(c) is required, followed by subtracting out the singularities.We demonstrate that the use of both endpoints ±1 as abscissae in interpolating f(t) is essential for uniformly approximating the integrals, namely for bounding the approximation errors independently of the values of c. In fact, for the f.p. integrals the use of double abscissae at both endpoints ±1 as well as simple abscissae in (-1, 1) enables the uniform approximations, while the use of simple abscissae at both endpoints ±1 and those in (-1, 1) is sufficient for the p.v. integrals. These facts suggest that finite Hilbert transforms (p.v. integrals) and their derivatives (f.p. integrals) with varied values of c could be approximated efficiently with the same number of abscissae, respectively. Some numerical examples are given.

[1]  Sheo Kumar A Note on Quadrature Formulae for Cauchy Principal Value Integrals , 1980 .

[2]  Tatsuo Torii,et al.  Hilbert and Hadamard transforms by generalized Chebyshev expansion , 1994 .

[3]  Giovanni Monegato,et al.  The Euler-Maclaurin expansion and finite-part integrals , 1998, Numerische Mathematik.

[4]  Walter Gautschi,et al.  Error Bounds for Gaussian Quadrature of Analytic Functions , 1983 .

[5]  G. Criscuolo,et al.  The numerical evaluation of cauchy principal value integrals with non-standard weight functions , 1998 .

[6]  Peter Linz,et al.  On the approximate computation of certain strongly singular integrals , 1985, Computing.

[7]  Tatsuo Torii,et al.  An automatic quadrature for Cauchy principal value integrals , 1991 .

[8]  Kai Diethelm,et al.  Generalized compound quadrature formulae for finite-part integrals , 1997 .

[9]  David Elliott,et al.  Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals , 1997 .

[10]  David Elliott,et al.  Truncation Errors in Two Chebyshev Series Approximations , 1965 .

[11]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[12]  A. H. Stroud,et al.  Methods of Numerical Integration—Second Edition (Philip J. Davis and Philip Rabinowitz) , 1986 .

[13]  Tatsuo Torii,et al.  An algorithm based on the FFT for a generalized Chebyshev interpolation , 1990 .

[14]  W. Morven Gentleman,et al.  Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation , 1972, Commun. ACM.

[15]  D. F. Paget,et al.  The numerical evaluation of Hadamard finite-part integrals , 1981 .

[16]  B. Bialecki A sinc quadrature rule for Hadamard finite-part integrals , 1990 .

[17]  K. Diethelm A method for the practical evaluation of the Hilbert transform on the real line , 1999 .

[18]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[19]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[20]  Giuliana Criscuolo,et al.  A new algorithm for Cauchy principal value and Hadamard finite-part integrals , 1997 .

[21]  Tatsuo Torii,et al.  Generalized Chebyshev interpolation and its application to automatic quadrature , 1983 .

[22]  David Elliott,et al.  Three algorithms for Hadamard finite-part integrals and fractional derivatives , 1995 .