Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems

Model-checking is a popular technique for verifying finitestate concurrent systems, whose behaviour can be modeled using Labeled Transition Systems (Ltss). In this paper, we study the model-checking problem for the modal µ-calculus on acyclic LTSS. This has various applications of practical interest such as trace analysis, log information auditing, run-time monitoring, etc. We show that on acyclic LTSS, the full µ-calculus has the same expressive power as its alternation-free fragment. We also present two new local model-checking algorithms based upon a translation to boolean equation systems. The first algorithm handles µ-calculus formulas ? with alternation depth ad(?) ? 2 and has time complexity O(|?|2 ? (|S|+|T|)) and space complexity O(|?|2 ? |S|), where |S| and |T| are the number of states and transitions of the acyclic LTS and |?| is the number of operators in ?. The second algorithm handles formulas ? with alternation depth ad(?) = 1 and has time complexity O(|?| ? (|S| + |T|)) and space complexity O(|?| ? |S|).

[1]  Johan Lewi,et al.  Efficient Local Correctness Checking for Single and Alternating Boolean Equation Systems , 1994, ICALP.

[2]  Colin Stirling,et al.  Modal Logics and mu-Calculi: An Introduction , 2001, Handbook of Process Algebra.

[3]  Hubert Garavel,et al.  OPEN/CÆSAR: An OPen Software Architecture for Verification, Simulation, and Testing , 1998, TACAS.

[4]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[5]  Rance Cleaveland,et al.  Local model checking and protocol analysis , 1999, International Journal on Software Tools for Technology Transfer.

[6]  Igor Walukiewicz A Complete Deductive System for the-Calculus , 1995, LICS 1995.

[7]  Igor Walukiewicz,et al.  A Complete Deductive System for the mu-Calculus , 1995 .

[8]  Rance Cleaveland,et al.  Faster Model Checking for the Modal Mu-Calculus , 1992, CAV.

[9]  Perdita Stevens,et al.  Practical Model-Checking Using Games , 1998, TACAS.

[10]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[11]  D. Kozen Results on the Propositional µ-Calculus , 1982 .

[12]  Mihaela Sighireanu,et al.  Efficient on-the-fly model-checking for regular alternation-free mu-calculus , 2003, Sci. Comput. Program..

[13]  Richard A. Kemmerer,et al.  State Transition Analysis: A Rule-Based Intrusion Detection Approach , 1995, IEEE Trans. Software Eng..

[14]  Colin Stirling,et al.  Modal and Temporal Properties of Processes , 2001, Texts in Computer Science.

[15]  Stephan Merz,et al.  Model Checking , 2000 .

[16]  Henrik Reif Andersen Model Checking and Boolean Graphs , 1992, ESOP.

[17]  Angelika Mader,et al.  Verification of modal properties using Boolean equation systems , 1997 .

[18]  Kim G. Larsen,et al.  Efficient Local Correctness Checking , 1992, CAV.

[19]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[20]  Mireille Ducassé,et al.  Opium: An Extendable Trace Analyzer for Prolog , 1999, J. Log. Program..

[21]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[22]  Alain Kerbrat,et al.  CADP - A Protocol Validation and Verification Toolbox , 1996, CAV.

[23]  Hans Bekic,et al.  Definable Operation in General Algebras, and the Theory of Automata and Flowcharts , 1984, Programming Languages and Their Definition.

[24]  C. R. Ramakrishnan,et al.  Fully Local and Efficient Evaluation of Alternating Fixed Points (Extended Abstract) , 1998, TACAS.

[25]  Bernhard Steffen,et al.  Characteristic Formulae for Processes with Divergence , 1994, Inf. Comput..

[26]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[27]  Jean-Pierre Hubaux,et al.  Testing Temporal Logic Properties in Distributed Systems , 1998, IWTCS.