The problem of clock synchronization: A relativistic approach

The problem of synchronization of the Earth-based clocks has been discussed in the framework of General Relativity Theory. The synchronization is considered as the transformation of the observers' proper time scales to the coordinate time scale of local inertial geocentric reference system, which is single for all the observers. The formulas for the relativistic corrections occurring in some methods of Earth-based clock synchronization (transported clock, duplex communication via geostationary satellite and meteor-burst link, LASSO experiments) have been derived enabling one to attain the accuracy of 0.1 ns.

[1]  Max Born,et al.  Einstein's Theory of Relativity , 1925 .

[2]  R. Hellings Erratum: "relativistic Effects in Astronomical Timing Measurements" [ASTRON. J. 91,650 (1986)] , 1986 .

[3]  D. W. Allan,et al.  Coordinate time in the vicinity of the Earth , 1985 .

[4]  A system of astronomical constants in the relativistic framework , 1986 .

[5]  D. W. Allan,et al.  Coordinate Time On and Near the Earth , 1984 .

[6]  V. Brumberg,et al.  Relativistic time scales in the solar system , 1990 .

[7]  R. Vessot Relativity experiments with clocks , 1979 .

[8]  Jeffrey M. Cohen,et al.  Accurate Time-Keeping and Accurate Navigation , 1983, MILCOM 1983 - IEEE Military Communications Conference.

[9]  D. W. Allan,et al.  Practical implications of relativity for a global coordinate time scale , 1979 .

[10]  C. Mo ller,et al.  The Theory of Relativity , 1953 .

[11]  R. Hellings,et al.  Relativistic effects in astronomical timing measurements. , 1986 .

[12]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[13]  Ashby,et al.  Relativistic effects in local inertial frames. , 1986, Physical review. D, Particles and fields.

[14]  Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism , 1983 .

[15]  A. Einstein The Meaning of Relativity , 1946 .

[16]  I. Shapiro,et al.  VLBI clock synchronization , 1977, Proceedings of the IEEE.

[17]  E. Mattison Ultra stable clocks for use in space , 1989 .

[18]  S. M. Kopejkin Celestial coordinate reference systems in curved space-time , 1988 .

[19]  R. Matzner,et al.  Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism , 1982 .

[20]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[21]  V. Brumberg,et al.  Relativistic Theory of Celestial Reference Frames , 1989 .

[22]  M. Fujimoto,et al.  Coordinate systems in the general relativistic framework , 1985 .

[23]  Richard A. Matzner,et al.  Gravitational deflection of light at 121 PPN order , 1981 .

[24]  R. Matzner,et al.  Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism. II. Photon orbits and deflections in three dimensions , 1982 .

[25]  A. Ashtekar,et al.  The Sagnac effect in general relativity , 1975 .

[26]  B.E.H. Serene The Lasso Experiment & Its Operational Organization , 1981 .

[27]  A. Skalafuris Current theoretical attempts toward synchronization of a global satellite network , 1985 .

[28]  C. O. Alley,et al.  Proper Time Experiments in Gravitational Fields with Atomic Clocks, Aircraft, and Laser Light Pulses , 1983 .

[29]  Albert Einstein,et al.  The Meaning of Relativity , 1921 .

[30]  I. Shapiro,et al.  Synchronization of Clocks by Very-Long-Baseline Interferometry , 1979, IEEE Transactions on Instrumentation and Measurement.

[31]  Theory and Experiment in Gravitational Physics , 1982 .

[32]  J. Mitchard The Theory of Relativity , 1921, Nature.

[33]  David W. Allan SOME METHODS OF MAINTAINING AND/OR GENERATING TIME AND FREQUENCY AT ARBITRARY POINTS ON SURFACE* OF THE EARTH , 1981 .