Mixed effects multivariate adaptive splines model for the analysis of longitudinal and growth curve data

In this article, I review the use of nonparametric methods in the analysis of longitudinal and growth curve data, particularly the multivariate adaptive splines models for the analysis of longitudinal data (MASAL). These methods combine nonparametric techniques (B-splines, kernel smoothing, piecewise polynomials) and models with random effects, and provide fruitful alternatives to mixed effects linear models. Similarities, differences, strengths and limitations among these methods are presented. The analysis of a real example is also presented to illustrate the application and interpretation of MASAL. Open questions are posed for further investigation.

[1]  Richard H. Jones Analysis of repeated measures , 1992 .

[2]  Heping Zhang,et al.  Mixed-Effects Multivariate Adaptive Splines Models , 2003 .

[3]  Heping Zhang,et al.  Multivariate Adaptive Splines for Analysis of Longitudinal Data , 1997 .

[4]  Burton H. Singer,et al.  Recursive partitioning in the health sciences , 1999 .

[5]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[6]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[7]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[8]  Heping Zhang,et al.  Maximal Correlation and Adaptive Splines , 1994 .

[9]  J. Hart Kernel regression estimation with time series errors , 1991 .

[10]  Art B. Owen,et al.  Discussion: Multivariate Adaptive Regression Splines , 1991 .

[11]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[12]  Young K. Truoung Nonparametric curve estimation with time series errors , 1992 .

[13]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[14]  Heping Zhang Analysis of Infant Growth Curves Using Multivariate Adaptive Splines , 1999, Biometrics.

[15]  J. Friedman Multivariate adaptive regression splines , 1990 .

[16]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[17]  Naomi S. Altman An iterated Cochrane-Orcutt procedure for nonparametric regression , 1992 .

[18]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[19]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[20]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[21]  H. Akaike A new look at the statistical model identification , 1974 .

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[24]  William Meredith,et al.  Latent curve analysis , 1990 .

[25]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[26]  Jianqing Fan,et al.  Test of Significance When Data Are Curves , 1998 .

[27]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[28]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[29]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[30]  P. Diggle Analysis of Longitudinal Data , 1995 .

[31]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[32]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[33]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[34]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[35]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[36]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[37]  Jianqing Fan,et al.  Test of Signiicance When Data Are Curves , 1998 .