An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems.

[1]  Gjergji Shore,et al.  Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis (MACOS). , 2006, Angewandte Chemie.

[2]  Paul Watts,et al.  Recent advances in synthetic micro reaction technology. , 2007, Chemical communications.

[3]  C. Oliver Kappe,et al.  Continuous‐Flow Microreactor Chemistry under High‐Temperature/Pressure Conditions , 2009 .

[4]  Takehiko Kitamori,et al.  A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions , 2004, Science.

[5]  A Paul Alivisatos,et al.  High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. , 2005, Journal of the American Chemical Society.

[6]  K. Jensen,et al.  Scaled-Out Multilayer Gas−Liquid Microreactor with Integrated Velocimetry Sensors , 2005 .

[7]  Klavs F Jensen,et al.  Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. , 2007, Angewandte Chemie.

[8]  Ananda Herath,et al.  Fully automated continuous flow synthesis of highly functionalized imidazo[1,2-a] heterocycles. , 2010, Organic letters.

[9]  S. Quake,et al.  Multistep Synthesis of a Radiolabeled Imaging Probe Using Integrated Microfluidics , 2005, Science.

[10]  C. Kappe,et al.  Heterogeneous versus homogeneous palladium catalysts for ligandless mizoroki-heck reactions: a comparison of batch/microwave and continuous-flow processing. , 2009, Chemistry.

[11]  T. Wirth,et al.  Advanced organic synthesis using microreactor technology. , 2007, Organic & biomolecular chemistry.

[12]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[13]  Paul Watts,et al.  Micro reactors: a new tool for the synthetic chemist. , 2007, Organic & biomolecular chemistry.

[14]  Robin Fortt,et al.  On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry: azo dyes. , 2002, Lab on a chip.

[15]  M. Prashad Palladium-Catalyzed Heck Arylations in the Synthesis of Active Pharmaceutical Ingredients , 2004 .

[16]  J. G. Vries The Heck reaction in the production of fine chemicals , 2001 .

[17]  Frank J. Villani,et al.  Application of Microreactor Technology in Process Development , 2004 .

[18]  Volker Hessel,et al.  Organic Synthesis with Microstructured Reactors , 2005 .

[19]  K. Jensen Microreaction engineering * is small better? , 2001 .

[20]  K. Nicolaou,et al.  Palladium-catalyzed cross-coupling reactions in total synthesis. , 2005, Angewandte Chemie.

[21]  Jeremy L. Steinbacher,et al.  Greener approaches to organic synthesis using microreactor technology. , 2007, Chemical reviews.

[22]  Masaaki Sato,et al.  Continuous microflow synthesis of butyl cinnamate by a Mizoroki-Heck reaction using a low-viscosity ionic liquid as the recycling reaction medium , 2004 .

[23]  Floris P. J. T. Rutjes,et al.  Optimizing the Deprotection of the Amine Protecting p-Methoxyphenyl Group in an Automated Microreactor Platform , 2009 .

[24]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[25]  Victor Sans,et al.  Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. , 2006, Chemical communications.

[26]  M. Oestreich The Mizoroki–Heck Reaction , 2009 .

[27]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[28]  I. Beletskaya,et al.  The heck reaction as a sharpening stone of palladium catalysis. , 2000, Chemical reviews.

[29]  Fabrice Renaud,et al.  Facile, Fast and Safe Process Development of Nitration and Bromination Reactions Using Continuous Flow Reactors , 2009 .

[30]  Victor Sans,et al.  Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction , 2006 .

[31]  L. Overman,et al.  The asymmetric intramolecular Heck reaction in natural product total synthesis. , 2003, Chemical reviews.

[32]  Atsushi Sugimoto,et al.  An automated-flow microreactor system for quick optimization and production: application of 10- and 100-gram order productions of a matrix metalloproteinase inhibitor using a Sonogashira coupling reaction , 2009 .

[33]  Klavs F. Jensen,et al.  Supercritical Continuous‐Microflow Synthesis of Narrow Size Distribution Quantum Dots , 2008 .

[34]  A. Kirschning,et al.  Monolithic polymer/carrier materials: Versatile composites for fine chemical synthesis , 2005 .

[35]  A. deMello,et al.  Intelligent routes to the controlled synthesis of nanoparticles. , 2007, Lab on a chip.

[36]  K. Nicolaou,et al.  Palladiumkatalysierte Kreuzkupplungen in der Totalsynthese , 2005 .

[37]  Steven V. Ley,et al.  Continuous Flow Ligand-Free Heck Reactions Using Monolithic Pd [0] Nanoparticles , 2007 .

[38]  G. C. Fu,et al.  A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. , 2001, Journal of the American Chemical Society.