Analysis and Construction of Multivariate Interpolating Refinable Function Vectors

In this paper, we shall introduce and study a family of multivariate interpolating refinable function vectors with some prescribed interpolation property. Such interpolating refinable function vectors are of interest in approximation theory, sampling theorems, and wavelet analysis. In this paper, we characterize a multivariate interpolating refinable function vector in terms of its mask and analyze the underlying sum rule structure of its generalized interpolatory matrix mask. We also discuss the symmetry property of multivariate interpolating refinable function vectors. Based on these results, we construct a family of univariate generalized interpolatory matrix masks with increasing orders of sum rules and with symmetry for interpolating refinable function vectors. Such a family includes several known important families of univariate refinable function vectors as special cases. Several examples of bivariate interpolating refinable function vectors with symmetry will also be presented.

[1]  Bin Han,et al.  Symmetry property and construction of wavelets with a general dilation matrix , 2002 .

[2]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[3]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[4]  Costanza Conti,et al.  A new subdivision method for bivariate splines on the four-directional mesh , 2000 .

[5]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[6]  Chris Bissell The sampling theorem , 2007 .

[7]  Bin Han,et al.  Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets , 2001 .

[8]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[9]  Ding-Xuan Zhou Interpolatory orthogonal multiwavelets and refinable functions , 2002, IEEE Trans. Signal Process..

[10]  B. Han,et al.  ANALYSIS OF OPTIMAL BIVARIATE SYMMETRIC REFINABLE HERMITE INTERPOLANTS , 2007 .

[11]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[12]  Jean-Louis Merrien A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.

[13]  Walter Gautschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices , 1962 .

[14]  Ding-Xuan Zhou Multiple Refinable Hermite Interpolants , 2000 .

[15]  Walter Gautschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices. II , 1963 .

[16]  B. Han,et al.  Generalized interpolating refinable function vectors , 2009 .

[17]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[18]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[19]  S. Riemenschneider,et al.  Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .

[20]  Xiang-Gen Xia,et al.  On sampling theorem, wavelets, and wavelet transforms , 1993, IEEE Trans. Signal Process..

[21]  R. Jia,et al.  Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .

[22]  T. Goodman,et al.  Construction of wavelets with multiplicity , 1994 .

[23]  A. Aldroubi,et al.  Nonuniform Average Sampling and Reconstruction in Multiply Generated Shift-Invariant Spaces , 2004 .

[24]  Bin Han,et al.  Multivariate refinable Hermite interpolant , 2003, Math. Comput..

[25]  Bin Han,et al.  Multivariate Refinable Hermite Interpolants , 2003 .

[26]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[27]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[28]  Ivan W. Selesnick,et al.  Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..

[29]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[30]  Qingtang Jiang,et al.  Matrix-valued symmetric templates for interpolatory surface subdivisions: I. Regular vertices , 2005 .