Evidence of homopolar bonds in chemically stoichiometric GexAsySe1−x−y glasses

We prepared five samples of chemically stoichiometric GexAsySe1−x−y glasses in order to examine whether homopolar bonds exist in these glasses. It is generally accepted that the structure of these chemically stoichiometric glasses should be dominated by GeSe4/2 tetrahedra and AsSe3/2 pyramids with a negligible quantity of homopolar bonds. Analysis of Raman scattering and X-ray photoelectron spectra of the glasses indicates that, while glasses located at the center of the glass-forming region primarily contain heteropolar bonds, a considerable number of homopolar bonds exists in glasses with extremely high Ge or As concentrations. This demonstrates that the formation of homopolar bonds might be intrinsic to chemically stoichiometric chalcogenide glasses.

[1]  W. Zachariasen,et al.  THE ATOMIC ARRANGEMENT IN GLASS , 1932 .

[2]  C. Sébenne,et al.  Optical-Absorption Edge and Raman Scattering in Ge x Se 1 − x Glasses , 1973 .

[3]  Y. Inuishi,et al.  Raman and Infrared Studies on Vibrational Properties of Ge–Se Glasses , 1977 .

[4]  G. Lucovsky,et al.  First evidence for vibrational excitations of large atomic clusters in amorphous semiconductors , 1977 .

[5]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[6]  J. E. Griffiths,et al.  Microscopic origin of the companionA1Raman line in glassy Ge(S,Se)2 , 1979 .

[7]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and ASi(Ge) , 1981 .

[8]  P. Boolchand,et al.  Universal structural phase transition in network glasses. , 1985 .

[9]  Cappelletti,et al.  Ab initio molecular-dynamics study of the structural, vibrational, and electronic properties of glassy GeSe2. , 1996, Physical review. B, Condensed matter.

[10]  M. Pederson,et al.  Raman-active modes ofa−GeSe2anda−GeS2:A first-principles study , 1999 .

[11]  B. Luther-Davies,et al.  Annealing induced phase transformations in amorphous As2S3 films , 2006 .

[12]  Steve Madden,et al.  Rebonding of Se to As and Ge in Ge33As12Se55 films upon thermal annealing: Evidence from x-ray photoelectron spectra investigations , 2007 .

[13]  B. Luther-Davies,et al.  Investigation of the structure of GexAsySe1−x−y glasses by x-ray photoelectron spectroscopy , 2008 .

[14]  Steve Madden,et al.  Properties of GexAsySe1-x-y glasses for all-optical signal processing. , 2008, Optics express.

[15]  Barry Luther-Davies,et al.  Observation of two elastic thresholds in GexAsyse1-x-y glasses , 2009 .

[16]  Steve Madden,et al.  Progress in optical waveguides fabricated from chalcogenide glasses. , 2010, Optics express.

[17]  T. Rouxel,et al.  Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system , 2010 .

[18]  Zhiyong Yang,et al.  Mechanism of photostructural changes in mixed-chalcogen As–S–Se glasses investigated by Raman spectroscopy , 2011 .

[19]  Bonding trends within ternary isocoordinate chalcogenide glasses Ge(x)As(y)Se(1-x-y). , 2013, Physical chemistry chemical physics : PCCP.

[20]  Xiang Shen,et al.  Correlation between structural and physical properties in Ge-Sb-Se glasses , 2013 .

[21]  Xiujian Zhao,et al.  Origin of the frequency shift of Raman scattering in chalcogenide glasses , 2014 .

[22]  P. Boolchand,et al.  Fragility and molar volumes of non‐stoichiometric chalcogenides: The crucial role of melt/glass homogenization , 2013, 1310.0663.

[23]  Rong Ping Wang,et al.  Amorphous Chalcogenides : Advances and Applications , 2014 .

[24]  Structural modeling of Ge6.25As32.5Se61.25 using a combination of reverse Monte Carlo and Ab initio molecular dynamics. , 2014, The journal of physical chemistry. A.

[25]  B. Luther-Davies,et al.  Chemical order in GexAsySe1-x-y glasses probed by high resolution X-ray photoelectron spectroscopy , 2014 .

[26]  Siwei Xu,et al.  Structural investigation on GexSb10Se90−x glasses using x-ray photoelectron spectra , 2014 .