Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable, Wurtzite-Derived Cu2ZnSnS4 Nanoparticles

Wurtzite-derived copper–zinc–tin sulfide nanoparticle films were observed to undergo a phase transformation to a kesterite phase when exposed to Se vapor at 500 °C. The resulting dense and selenized Cu2ZnSn(S,Se)4 (CZTSSe) films were found to have the same bilayer kesterite structure as absorber layers derived directly from kesterite Cu2ZnSnS4 (CZTS) nanoparticles (Guo, Q.; Ford, G. M.; Yang, W.-C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R. J. Am. Chem. Soc. 2010, 132, 17384−17386). The top layer was fully sintered into micrometer size grains, while the bottom unsintered layer consisted of small, nanometer size kesterite grains. When compared to films formed from kesterite CZTS nanoparticles, solar cells fabricated from the wurtzite-derived CZTS nanoparticles were found to have lower power conversion efficiencies (PCE). Surprisingly, for those CZTSSe films that were formed from wurtzite-derived nanoparticles, it was found that extensive selenization leads to the disappearance of the botto...

[1]  Rakesh Agrawal,et al.  9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .

[2]  D. Abou‐Ras,et al.  Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .

[3]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[4]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[5]  H. Hillhouse,et al.  Enhancing the performance of CZTSSe solar cells with Ge alloying , 2012 .

[6]  Kaushik Roy Choudhury,et al.  High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. , 2012, Journal of the American Chemical Society.

[7]  Rommel Noufi,et al.  Co-Evaporated Cu2ZnSnSe4 Films and Devices , 2012 .

[8]  Qinghua Xu,et al.  Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. , 2012, Chemistry.

[9]  K. Ryan,et al.  Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. , 2012, Journal of the American Chemical Society.

[10]  A. Walsh,et al.  Erratum: Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors [Phys. Rev. B 82 , 195203 (2010)] , 2011 .

[11]  Yadong Li,et al.  Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. , 2011, Chemical communications.

[12]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[13]  A. Walsh,et al.  Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors , 2010 .

[14]  Souvik Mahapatra,et al.  On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells , 2010, IEEE Electron Device Letters.

[15]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[16]  G. Kresse,et al.  Defect formation and phase stability of Cu 2 ZnSnS 4 photovoltaic material , 2010 .

[17]  H. Hillhouse,et al.  Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.

[18]  Georg Kresse,et al.  Cu 2 ZnSnS 4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study , 2009 .

[19]  L. An,et al.  Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. , 2008, Journal of the American Chemical Society.

[20]  A. Wold,et al.  Physical properties of the quarternary chalcogenides Cu2IBIICIVX4 (BII = Zn, Mn, Fe, Co; CIV = Si, Ge, Sn; X = S, Se) , 1979 .

[21]  W. Schäfer,et al.  Tetrahedral quaternary chalcogenides of the type Cu2IIIVS4(Se4) , 1974 .

[22]  W. Su,et al.  Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei , 2013 .

[23]  Yu‐Guo Guo,et al.  Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic|[ndash]|inorganic hybrid photodetectors , 2012 .

[24]  Hooman Mohseni,et al.  Universality of non-ohmic shunt leakage in thin-film solar cells , 2010 .

[25]  H. Katagiri,et al.  The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells , 2009 .

[26]  H. Haeuseler,et al.  Far infrared studies on stannite and wurtzstannite type compounds , 1991 .