Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable, Wurtzite-Derived Cu2ZnSnS4 Nanoparticles
暂无分享,去创建一个
[1] Rakesh Agrawal,et al. 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .
[2] D. Abou‐Ras,et al. Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .
[3] Wei Wang,et al. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .
[4] Supratik Guha,et al. Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .
[5] H. Hillhouse,et al. Enhancing the performance of CZTSSe solar cells with Ge alloying , 2012 .
[6] Kaushik Roy Choudhury,et al. High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. , 2012, Journal of the American Chemical Society.
[7] Rommel Noufi,et al. Co-Evaporated Cu2ZnSnSe4 Films and Devices , 2012 .
[8] Qinghua Xu,et al. Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. , 2012, Chemistry.
[9] K. Ryan,et al. Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. , 2012, Journal of the American Chemical Society.
[10] A. Walsh,et al. Erratum: Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors [Phys. Rev. B 82 , 195203 (2010)] , 2011 .
[11] Yadong Li,et al. Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. , 2011, Chemical communications.
[12] Rakesh Agrawal,et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.
[13] A. Walsh,et al. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors , 2010 .
[14] Souvik Mahapatra,et al. On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells , 2010, IEEE Electron Device Letters.
[15] A. Walsh,et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .
[16] G. Kresse,et al. Defect formation and phase stability of Cu 2 ZnSnS 4 photovoltaic material , 2010 .
[17] H. Hillhouse,et al. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.
[18] Georg Kresse,et al. Cu 2 ZnSnS 4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study , 2009 .
[19] L. An,et al. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. , 2008, Journal of the American Chemical Society.
[20] A. Wold,et al. Physical properties of the quarternary chalcogenides Cu2IBIICIVX4 (BII = Zn, Mn, Fe, Co; CIV = Si, Ge, Sn; X = S, Se) , 1979 .
[21] W. Schäfer,et al. Tetrahedral quaternary chalcogenides of the type Cu2IIIVS4(Se4) , 1974 .
[22] W. Su,et al. Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei , 2013 .
[23] Yu‐Guo Guo,et al. Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic|[ndash]|inorganic hybrid photodetectors , 2012 .
[24] Hooman Mohseni,et al. Universality of non-ohmic shunt leakage in thin-film solar cells , 2010 .
[25] H. Katagiri,et al. The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells , 2009 .
[26] H. Haeuseler,et al. Far infrared studies on stannite and wurtzstannite type compounds , 1991 .